gatech.instructure.com

Project 2

Read this assignment description carefully before you begin. Start early, because you will
be running performance experiments. You will need time to do the experiments and create a
write-up after you finish coding. Most of the points for this assignment will come from the
experiments and write-up, so you’ll want enough time to do a good job. Also, there are
limited resources for running experiments and if everyone waits until the last week then
there will be a lot of contention for these resources. (You are solely responsible for finishing
on time - too much contention for experimental resources is not an excuse for lateness, so
start early!)

Overview

The goal of this assignment is to introduce OpenMP, MPI, and barrier synchronization
concepts. You will implement several barriers using OpenMP and MPI, and synchronize
between multiple threads and machines. You may work in groups of 2, and will document the
individual contributions of each team member in your project write-up. (You may use Piazza
to help you find a partner.)

OpenMP allows you to run parallel algorithms on shared-memory multiprocessor/multicore
machines. For this assignment you will implement two spin barriers using OpenMP. MPI
allows you to run parallel algorithms on distributed memory systems, such as compute
clusters or other distributed systems. You will implement two spin barriers using MPI. Finally,
you will choose one of your OpenMP barrier implementations and one of your MPI barrier
implementations and combine the two in an MPI-OpenMP combined program in order to
synchronize between multiple cluster nodes that are each running multiple threads.

You will run experiments to evaluate the performance of your barrier implementations
(information about compute resources for running experiments is in a later section). You will
run your OpenMP barriers on an 8-way SMP (symmetric multi-processor) system, and your
MPI and MPI-OpenMP combined experiments on a cluster of up to 24 nodes with 12 cores
each.

Finally, you will create a write-up that explains what you did, presents your experimental
results, and most importantly, analyzes your results to explain the trends and phenomona


https://gatech.instructure.com/courses/136058/assignments/505438

you see (some hints for analysis are given below).

Detailed Instructions

These instructions are presented in a sequential order. However, depending on how you
decide to divide the work with your project parter, you may choose do so some of these
things in parallel. That is okay, so long as everything gets done, and you say who did what in
your write-up.

Part 1: Learn about OpenMP and MPI

The first thing you want to do is learn how to program, compile, and run OpenMP and MPI
programs.

You can compile and run OpenMP programs on any Linux machine that has libomp installed.
You can try the example code attached to this assignment (openmp.tar.gz), as well as
looking at the following informational resources:

You can compile and run MPI programs on any Linux machine that has openmpi installed
(Note: O_penMPI !'= OpenMP_). Although MPI is normally used for performing computations
across different network-connected machines, it will also run on a single machine. This
setup can be used for developing and testing your project locally. You can try running the
example code attached to this assignment (mpi.tar.gz), as well as looking at the following
informational resources:

Part 2: Develop OpenMP Barriers

Implement two spin barriers using OpenMP. You may choose any two spin barriers you
like. For example, you could use ones from the MCS paper, anything covered in lecture, or
any variation on these you think of. Obviously, your barrier implementations cannot use the
built-in OpenMP barrier! However you can optionally use it as a third barrier in your
experiments for baseline/control purposes, if you choose.

Part 3: Develop MPI Barriers

Implement two spin barriers using MPI. At least one of these implementations must be a
tree-based batrrier (if you choose to do both as tree-based barriers, that’s okay too). You may
also opt for one of these implementations to use the same algorithm you chose for one of
your OpenMP barriers, but the other one must be different. (However, even if you choose the
same algorithm for one of them, you may find that you must implement it very differently



when using MPI vs. using OpenMP). Obviously, your barrier implementations cannot use the
built-in MPI barrier! However you can optionally use it as a third barrier in your
experiements, as a baseline/control, if you choose.

Part 4: Develop MPI-OpenMP Combined Barrier

Now choose one of the OpenMP barriers you implemented, and one of the MPI barriers you
implemented. Combine them to create a barrier that synchronizes between multiple nodes
that are each running multiple threads. You'll also want to be sure to preserve your original
code for the two barriers so that you can still run experiments on them separately. You can
compare the performance of the combined barrier to your standalone MPI barrier. Note that
you will need to run more than one MPI process per node in the standalone configuration to
make a comparable configuration to one multithreaded MPI process per node in the
combined configuration, so that total number of threads is the same when you compare.

Part 5: Run Experiments

The next step is to do a performance evaluation of your barriers. You need to write a test
harness that runs some OpenMP threads or MPI processes and synchronizes the
threads/processes using your barrier implementation. Then your test harness should
measure the performance of your barriers in a manner similar to the MCS paper. You should
look at the experiments in that paper again and think about how they were conducted.

You will measure your _OpenMP barriers on a _single cluster node, and scale the number
of threads from 2 to 8.

You will measure your MPI barriers on multiple cluster nodes. You should scale from 2 to
12 MPI processes, one process per node.

You will measure your MPI-OpenMP combined barrier on multiple cluster nodes, scaling
from 2 to 8 MPI processes running 2 to 12 OpenMP threads per process.

Some things to think about in your experiments:

e When scaling from X to Y of something, you don’t need to run every single number
between X and Y. However, you should run one at X and one at Y, of course, and
enough in between to see any interesting trends or phenomona that occur. You’'ll have
to decide at exactly what values you need to run the experiment in order to accomplish
this. (Although if you have time and want to, you may run ever single number.)

e You can use the gettimeofday() function to take timing measurements. See the man



page for details about how to use it. You can also use some other method if you prefer,
but explain in your write-up which measurement tool you used and why you chose it.
Consider things like the accuracy of the measurement and the precision of the value
returned.

e If you're trying to measure an operation that completes too fast for your measurement
tool (i.e., if your tool is not precise enough), you can run that operation several times in
a loop, measure the time to run the entire loop, and then divide by the number of
iterations in the loop. This gives the average time for a single loop iteration. Think a
moment about why that works, and how that increases the precision of your
measurement.

e Finally, once you’ve chosen a measurement tool, think a bit about how you will take
that measurement. You want to be sure you measure the right things, and exclude the
wrong things from the measurement. You also want to do something to account for
variation in the results (so, for example, you probably don’t want to just measure once,
but measure several times and take the average).

Part 6: Write-Up

The last part is to create the write-up. This should a PDF file and it should include a
minimum of the following:

e The names of both team members

¢ An introduction that provides an overview of what you did (do not assume the reader
has already read this assignment description).

e An explanation of how the work was divided between the team members (i.e., who did
what)

e A description of the barrier algorithms that you implemented. You do not need to go
into as much implementation detail (with pseudocode and so forth) as the MCS paper
did. However, you should include a good high-level description of each algorithm. You
should not simply say that you implement algorithm X from the paper and refer the
reader to the MCS paper for details.

e An explanation of the experiments, including what experiments you ran, your
experimental set-up, and your experimental methodology. Give thorough details. Do
not assume the reader has already read this assignment description.

e Your experimental results. DO present your data using graphs. DO NOT use tables of
numbers when a graph would be better (Hint: a graph is usually better). DO NOT
include all your raw data in the write-up (if you want to submit your raw data, you may
include it in a separate file in your submission). Compare both your OpenMP barriers.
Compare both your MPI barriers. Present the results for your MPI-OpenMP barrier.



e An analysis of your experimental results. You should explain why you got the results
that you did (think about the algorithm details and the architecture of the machine on
which you experimented). Explain any trends or interesting phenomena. If you see
anything in your results that you did not expect, explain what you did expect to see and
why your actual results are different. There should be at least a couple of interesting
points per experiment. The key is not to explain only the _what _of your results, but the
how and why as well.

e A conclusion.

Resources

You will have access to the pace-ice PACE cluster for use with this project. Please read the
following instructions carefully to familiarize yourself with the PACE cluster computing

Note: You will have to be on the Georgia Tech VPN in order to login to these clusters.

You must use the queue named “pace-ice” to run your programs on the cluster. Please refer
to the following document on how to create a batch script to run your program job:

http://docs.pace.gatech.edu/scheduler/job submission/(Links to an external site.)

Note that you must not use the cluster for development. Develop all implementations
(OpenMP, MPI, OpenMP-MPI combination) using your local resource (e.g., a laptop) and
make sure your code runs fine. After you have developed working implementations locally,
you may use the cluster to run these implementations and gather results for your write-up.

We will provide example PBS batch configuration scripts that you can use to more easily
submit/run your job on the coc-ice cluster within a week after this assignment is released,
but you should still familiarize yourself with basic usage of the cluster so you can interpret
and adapt these scripts for your use.

Submission Instructions

Please submit following results in a single zip file via Canvas:

All your code (barrier implementations, experiment test harness, etc.)
Makefiles

Anything else we may need to compile and run all your barriers in a README
Experimental data

Your write-up (as a single PDF file) that includes all the things listed above


https://gatech.instructure.com/courses/136058/files/15912137/download
http://docs.pace.gatech.edu/scheduler/job_submission/
http://docs.pace.gatech.edu/scheduler/job_submission/

e Your directory structure should be like this:
Firstname_Lastname p2/
|- MPI/
|- Makefile
|- .c and .h files
|- OpenMP/
|- Makefile
|- .c and .h files
|- Combined/
|- Makefile
|- .c and .h files
|- README
|- Write up (PDF)
|- Data/
|- all experimental data

Only one team member needs to submit the actual project files to Canvas, but be sure that
both team members’ names are on the write-up! The other team member (who is not
submitting the project files) should simply turn in a text file indicating both team members’
names and the name of the team member who submitted the project files.

In addition, please note that the write-up will be an important part of the project grade. As
such, it is a good idea to make sure you create a good write-up. The assignment description
on Canvas has some guidelines for the content of the write-up, but be thorough. Treating the
guidelines like a set of checkmarks and doing the minimum to meet those checkmarks will
not earn you full points. | expect students in a graduate-level course to do more than
following a checkmark list. For an example of what a good write-up looks like, see the MCS
paper itself. Although your paper does not need to be as long as the MCS paper (since you
are only implementing a subset of the algorithms), it would still be a good idea to emulate its
style and content to ensure success.

Examples and Instructions for Cluster setup

project2-common-master.zip



https://gatech.instructure.com/courses/136058/files/15912131/download

