Application Development Guide

A guide to application development with libvirt

Daniel Berrange, Red Hat
Chris Lalancette, Red Hat
Laine Stump, Red Hat
Daniel Veillard, Red Hat
Dani Coulson, Red Hat
David Jorm, Red Hat
Scott Radvan, Red Hat

Application Development Guide: A guide to application development

with libvirt

by Daniel Berrange, Chris Lalancette, Laine Stump, Daniel Veillard, Dani Coulson, David Jorm, and Scott Radvan
Abstract

This document provides a guide for application devel opers using libvirt.

Copyright © 2009, 2010, 2011, 2012 Red Hat, Inc. and others. This material may only be distributed subject to the terms and conditions set forth
in the GNU Free Documentation License (GFDL), V1.2 or later (the latest version is presently available at http://www.gnu.org/licenses/fdl .txt).

http://www.gnu.org/licenses/fdl.txt

Table of Contents

= = o PPN iX
DOCUMENE CONVENLIONSeeetiieeiiti ettt ettt e ettt e et e e e et e e et e e e e ena s IX
Typographic CONVENTIONSiiiiiiieeeii e iX
PUIT-QUOLE CONVENLIONSceevtiieeiii ettt ettt et e e ettt e eeeeb e e enbaeeees X
NOES @NA WAIMINGS ...ttt e e e e s Xi

We Need FeadDaCk! ... e Xi
O 11 0o 1o ' o PPN 1
L@ oV PP 1
GlOSSANY OF TEITIIS ...ttt ettt et e et e e et e e e b 1
A A (o 01 = 11 = T ST 3
OBJECE MOEL ...t ettt e 3
HYPENVISOr CONMNECTIONS ...ttt ettt e e e e e e s 3
GUESE OMAINS ...ttt ettt ettt e et e et e e e e e enanns 3
ViIrtual NEEWOTKS ... e e 4
SLOTBYE POOIS ...ttt ettt ettt et et 4
SLOTBOE VOIUIMIES ...ttt e e et e e e s 5

[(01 0 L= Lot =S PP 5
(DGR 1 1 (= PR 5
REMOLE MENBGEMENT ...ttt e e e e e e enens 7
BASIC USBOE ... ettt ettt ettt 7

Data TraNSPONScevueeeiee ettt e e et 7
AUthentication SChEMES ... 8
Generating TLS CatifICAIESovvuieiiii e 9
Public Key INfrastruCture SEIUDcooouuniiiiiiiiee e 9

I @0 0= 1 o 0 TP PP 11
L@ oV PPN 11
VIFCONMNECTOPEN ..ttt ettt e et ettt e e e et e e e e eaa s 11
VirConneCtOPENREBAONIYuuiiiiii e 12
VIirCoNNECTOPENAULNooiiii et 12
VIFCONNECECIOSE ... ettt et e et e e e et e e e e e aa e 16

L0 I o0 7= £ PP 16
[0 Tor= L | 3PP 17
REMOLE URIS ..ot e ettt e e e eaes 18
Capability INFOIMMELIONceeuiei ettt e e 21
[(01 AT 01 101 7= 1 o o PSP 25
VirCONNECIGEEHOSINAIME ... ettt e e eeees 25
VirCONNECIGELMBXV CPUS ...ttt ettt ettt e e e e 25
VIrNOOEGEIFIEEMEIMOIY ...ttt eeees 26
VIFNOGEGELINO ...t e e e enns 27
VirNOJeGEICE ISFTEEMEIMONYciiiiiiiiiii e e 28
VIFCONMNECIGEITYIE ..ttt ettt ettt ettt e et e e e e e e era e e eenens 29
VIFCONNECIGELV ESION ...ttt ettt ettt ettt e et et et e e e e e e eneans 29
VirCONNECIGELLIDVEISIONceiieiieeei e e 30
VIFCONNECIGEIURI ..ot e e e e e 31
VIrCONNECLISENCIYPLEA ... e e 31
VIFCONNECLISSECUNE ...ttt ettt e e e e 32
EVENt 100D INEEGIEIIONeeeeie ettt ettt ettt e et e e b s 32
SECUNLY MOEL ...t ettt et e e n e eeneas 33
Error analingoooeeene e 33
AV = = o U o PP 37
VIFCONNSELEITONFUNGeieee e et e e eeens 38

Application Development Guide

AL (00 o)V S {1 o 40
(T = s 1 o PSP 40

(S Y I = 1 = o PR 41
(LRSS 1= o PSP 42

A == S (] SRR 43
VIFCONNRESELEITON ... vt e e 44
VIFCONNCOPYLASIEITON .. iivi e e e e e e e e 44
VIFCONNGEILBSIEITOr ...oeevi e eaaens 44
(D= 010 (o [T 0o IV A 1o (o1 s P 44
Environment Variablescoooiiiiiiii e 45
INtegrated EXAMPIEu i e 46
A, GUESE DOMAINSeeeii ettt ettt e e et e e e et e e e e et e e e e et e e e e bt e e e e et e e e eatn s 51
DOMAIN OVEIVIEW ...ttt e et e e e et r e e e e et n e e e e et s e e e eateneeeeete s eeeentnnaeaees 51
LTS 1o [(o]0 =11 52
[1= £ /o 11 o) N 54
Provisioning and Startingcoovuueeiiieiii e 54

LS (0] o] oo R P 60
Suspend / Resume and Save / RESIOIEcouuuiiii e 60
T = (o) o PPN 62

F U (0 = PP RTPRP 62
DOMaIN CONFIGUIALIONiiieeiit i ee et e e et e e et e eeaneeannaees 62
270 4970 (=S PPN 62
MEMOTY / CPU FESOUICESivueiiiieeii e et e et e e e et e e et e et e e et e e et e e et e e et e ean e eanaas 62
LIfECYCIE CONMIOIS ..u i e e e e e e eeas 63

101 oo Q= Y/ oo PN 63
FEAIUIES ..ottt ea e 63

Y KoTalh o) T aTo [o= g 0] 10=1g o NP 63
DOMaIN PEITOIMBINCEuuiiieiii et e e e e e e e e e e e e et e e et e e eaeeaanees 63
VCPU PEITOMMENCE ... cve i e e e e e e e ees 63

F@ I 1= 1o PPN 63
(DY o =l we a1 1o U1 - oo P 63
001U = o PSP 63
D1 2O SPPRT 63

[N Y04 S T 63

LR LSS NS = 1P 63
MICE & TADIELS .o e 64

USB device passthroughcoouniiiiii e 64

PCI device passthroughooouiiiii 64

Live configuration Changecccuuiiiii i e e e e e 65
Memory ballOONINGco.uiiii e 65

(1= I 07011 . 11 o 65
Device hotplug / UNPIUG ... ooeeee e e e e e 65
Device MEdia ChanQe coviii e e 65
BIOCK DEVICE JOBS ...t e 65

S = o U 1 Y2110 L= P 68
EVENE NOLTICAIIONS ...evvieee et e et e e et e e e et neeeeaanneaees 68
JLIL 1211 PP 68
SChEAUIEr PArAMELENS ... iiie e e e e e e e e eeens 68

[N LO N o] = o= 1 = | PPN 68

IS (0= o (= = oo | £ 69
L@ Y YT PSP 69
[T 1o T oo o £ 69
o0 o 69
() £=103 Y £ oo 011 o) PN 69

Application Development Guide

DiSCOVENNG POOI SOUICESivvieiiieeiie et e et e e et e e et e e et e e et e e et e e st e sat e e et e estnaesaneesnaees 69

[oTo o] o T 1W =i 'o) o 69
VOIUME OVEIVIEIW ...ttt e e e e et e e e et e e e et e e e e et e e e e enan s 69

LTS 0 0] LU 0= 69
VOlUME INFOMMIBEION ..eevteieii e et e e et e e et e e e et e e e e eaan s 69
Creating and deleting VOIUMEScouiiiiiii e e e 69
CloNING VOIUMESoiicii e e e e e e e e e e e e e et e e e e eeen 69
(00011 To 81T 070 BN 0] 1N 427 PN 70

B. VITTUAl INBIWOTKS ... et e et e e et e e e et e e e et n e e e ertnaeeeeatnaaeaees 71
L@ YT T PSP 71
LIStING NEIWOTKS «.oeniei e e e e e e e e e e e e e e e et e e et e e et e e et e eaaneeannaees 71

[1= £ /o 11 o) N 71
NEWOrK CONFIGUIAIONieet it e e e e e e e e e e ean s 71

7. NEIWOTK INEEITACES ..t e e et e e et e e e et e e eennns 72
L@ YT T PSP 72
XML Interface DeSCription FOrMELiiviuiiii e e e e e e 72
Retrieving Information About INtErfacesSoviiiii i, 73
Enumerating INterfacescoouuiiiii e 73
Alternative method of enumerating interfacescovvviiiiiiii i 74

Obtaining a virlnterfacePtr for an Interfaceccoooviiiii i 75

Retrieving Detailed Interface InfOrmationccoooiiiiiiiiiiiii e 75

Managing interface configuration fil€Scc.ceiiiii i 76
Defining an interface configurationc.ooviiiii i 76

Undefining an interface configurationcoooeiiiiii i e, 77

Interface lifecycle Managementoiiiiiiii e 77
ACHVALING 8N INEEITACE ... i 78
Deactivating an iINTEITaCeivve i 78

Interface object MEMOrY ManagemMENtc.uiiiiii i e e e e e e e eees 78

8. HOSE DBVICES ...ttt ettt et e et e e e et e e e e et e e e e et e e e e et eaaat e aae 80
9. Alternative Language BindiNGSviiiniiiiiiciii e 81
10T T 81

= SRS 81

N 7 SRR 81

Y = Y= o) I 1 o) Y/ 82

List of Figures

2.1 lDVIIE driver @rChITECIUIE oee ettt e e e e e e et eaaen
4.1, Guest doMaiN HIFECYCIE ... 54

Vi

List of Tables

S 1= 11111 27 [| O PP PP UPPRTTRPPPPIN 1
P T =0 oo £ T TSP 7
2.2, SCNEIMES . 8
2.3, PUDIIC KBY SEIUD ..ottt ettt et 9
3.1, SUPPOITEA DIIVENS ...ttt ettt ettt et e e e e e enaans 17
3.2, URI COMPONENLSeetieetie ettt ettt e e et e e e e e et et e e e et e e e een s 18
3.3. Extra parameters for remote URIScooovniiiiiii e 19
R 1N = Y o= PPN 24
3.5. virNodelnfo Structure MEemMBDENSo.uui i 27

Vii

List of Examples

3.1, USING VIFCONNECIODPEN ...ttt e ettt ettt ettt ettt e ettt e e et et e et e et n e e e e ebenaeeeebanaeeene 11
3.2. Using VirConneCtOPENREAAONIYuuuiiiiiie ettt e e e e 12
3.3, USiNg VirConNECIOPENAULNcoiit ettt ettt e et e e et e e e ena e eees 13
3.4. Using a custom credential callback with virConnectOpenAuUthc.ooiveiiiiiieiiiinecei, 13
3.5. Using virConnectClose with additional referencescocuuoiiiiiiiiiieiiii e 16
3.6. Connecting to alocal QEMU NYPEIVISOTccieuiiieiiiiie ettt 17
3.7. Connecting to a remote QEMU NYPEIVISOTuuiiiiiiiiiiei e 20
3.8. Using VirConneCtGetCapabilitieSiiiieeiieiiiis e 21
3.9. Example QEMU driver Capabilitiesiiiiiiiiieiii e 21
3.10. UsiNg VirConNECtGELHOSINAIMEceutieiiiii ettt e e e e e eeees 25
3.11. USINg VirCONNECLGELMBXV CUSvvueeeii ettt ettt e et e e e e e an s 26
3.12. USINg VIrNOJEGELFIEEMEIMIONY ... cieitieeeeii ettt ettt e e e e et e eeena e eene 26
3.13. USING VITNOUIEGELINTOcceeiie ettt a e 27
3.14. Using VirNOJeGEtCe ISFTEEMEMONYuuiiiiiiieieite ettt e e 28
3.15. USING VIFCONNECIGELTYIEeevti ettt ettt ettt ettt ettt et e e e e ne e e enaans 29
3.16. USING VIFCONNECIGELV EISION ... eeeitie ettt ettt ettt e et e et e e e e e enaans 29
3.17. Using VirConNECtGELLIDVEISIONccuuuiiiiiiiie ettt 30
3.18. USiNg VIrCONNECIGELURIcoiiiiieiiii e 31
3.19. Using VirConneCtISENCIYPLEAcouuuiiiii e 31
3.20. USING VIFCONNECISSECUNE ... eetiiie ettt ettt ettt e et e et e e et e e e e s 32
3.21. Using VirNodeGetSeCUrityMOE]cooouuiiiiiiiie e 33
3.22. Running virsh with environment variablesoooiiiiiii e 45
4.1. Fetching a domain object from an IDoviiiiiiiiiii e 51
4.2. Fetching a domain object from an NaMEo 51
4.3. Fetching a domain object from an UUIDoiiiiiiiiiiiii e 52
4.4, Listing @CtiVE OMAINScoutiiiiiti ettt ettt e e et e e e ee e e e e et e e eenbaaaaees 52
4.5, Listing iNaCtiVe JOMAINSuuuiiiiii ettt et e e 53
4.6. Fetching all domain ODJECESuuiiiiiiei e 53
7.1. XML definition of an ethernet interface using DHCP ..o 72
7.2. XML definition of an ethernet interface with Static IPc..iviiiiiiiiii e, 73
7.3. XML definition of a bridge device with ethO and ethl attachedcoiiiiiiii e, 73
7.4. XML definition of avlan interface associated With ethOcooviiiiiiiiiii e, 73
7.5. Getting a list of active ("up") interfaces 0N @ hostcooiviiiiiiiiii e, 74
7.6. Getting alist of inactive ("down") interfaces on ahostooveiiiiiiiiiiiiiic e, 74
7.7. Fetching the virlnterfacePtr for agiven interface namecccooevviiiiiiii e, 75
7.8. Fetching the virlnterfacePtr for a given interface MAC AdOresscoevvivieiiiiiiieciiiineeecn, 75
7.9. Fetching the name and mac address from an interface objectccooiveiiiiiiieiiiiiiices 76
7.10. Fetching the XML configuration string from an interface objectccooiiviiiii, 76
7.11. DefiNiNg @ NEW INEITACEcouuiiiiiii et 76
7.12. Undefining brO interface after saving itS XML datacccovuiiiiiiiiniiiiiiieii e 77
7.13. Temporarily bring down eth2, then bring it back Upcooviiiiiiiiii e, 78
7.14. Reference counting an interface ODJECEcoovuiiiiiiiii i 78

viii

Preface

Document Conventions

Thismanual uses several conventionsto highlight certain words and phrases and draw attention to specific
pieces of information.

Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These conventions,
and the circumstances they apply to, are as follows.

Mono- spaced Bol d

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keys and key combinations. For example:

To see the contents of the file my_next bestsel | i ng_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the shell
prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key, all presented in mono-spaced bold and all
distinguishable thanks to context.

Key combinations can be distinguished from an individual key by the plus sign that connects each part
of akey combination. For example:

Press Enter to execute the command.
Press Ctrl+Alt+F2 to switch to avirtual terminal.

Thefirst example highlights a particular key to press. The second example highlights a key combination:
aset of three keys pressed simultaneously.

If source codeisdiscussed, class names, methods, functions, variable names and returned values mentioned
within a paragraph will be presented as above, in nono- spaced bol d. For example:

File-related classesincludef i | esyst emfor filesystems, f i | e for files,anddi r for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog-box text;
labeled buttons; check-box and radio-button labels; menu titles and submenu titles. For example:

Choose System - Preferences -. Mouse from the main menu bar to launch Mouse Pref-
erences. In the Buttons tab, select the Left-handed mouse check box and click Close to
switch the primary mouse button from the left to the right (making the mouse suitable
for use in the left hand).

Toinsert aspecia character into agedit file, choose Applications - Accessories . Char-
acter Map from the main menu bar. Next, choose Search - Find... from the Character
Map menu bar, type the name of the character in the Search field and click Next. The
character you sought will be highlighted in the Character Table. Double-click this high-

Preface

lighted character to place it in the Text to copy field and then click the Copy button.
Now switch back to your document and choose Edit - Paste from the gedit menu bar.

Theabovetext includes application names; system-wide menu names and items; application-specific menu
names; and buttons and text found within a GUI interface, all presented in proportional bold and all dis-
tinguishable by context.

Mono- spaced Bold ItalicorProportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or variable
text. Italicsdenotestext you do not input literally or displayed text that changes depending on circumstance.
For example:

To connect to a remote machine using ssh, type ssh user nane@donai n. nane at
a shell prompt. If the remote machine is exanpl e. comand your username on that
machine is john, type ssh john@example.com.

Themount -oremount f i | e- syst emcommand remountsthe named file system. For
example, to remount the/ hone file system, the command ismount -oremount /home.

To seetheversion of acurrently installed package, usetherpm -q package command.
It will return aresult asfollows: package- ver si on-r el ease.

Note the words in bold italics above: username, domain.name, file-system, package, version and release.
Each word is a placeholder, either for text you enter when issuing a command or for text displayed by
the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example;

Publican is a DocBook publishing system.

Pull-quote Conventions

Terminal output and source code listings are set off visually from the surrounding text.
Output sent to aterminal is set in nono- spaced r onan and presented thus:

books Deskt op docunentation drafts nss phot os stuff svn
books tests Desktopl downl oads i mrages notes scripts svgs

Source-code listings are also set in mono- spaced r oman but add syntax highlighting as follows:

package org.j boss. book. j ca. ex1;
i mport javax.nam ng.Initial Context;

public class ExCient
{
public static void main(String args[])
t hrows Exception

{

Initial Context iniCx new I nitial Context();

nj ect ref = ini & x. | ookup("EchoBean");
EchoHorme hone = (EchoHone) ref;
Echo echo = hone.create();

Preface

Systemout.println("Created Echo");

System out. println("Echo.echo('Hello") =" + echo.echo("Hello"));
}
Notes and Warnings
Finally, we use three visua stylesto draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approachesto the task at hand. Ignoring a note should have
No negative consequences, but you might miss out on atrick that makes your life easier.

I mportant

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled “Important” will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

We Need Feedback!

Y ou should over ride this by creating your own local Feedback.xml file.

Xi

Chapter 1. Introduction

Libvirt is a hypervisor-independent virtualization API and toolkit that is able to interact with the virtual-
ization capabilities of a range of operating systems. It is free software under the GNU Lesser Genera
Public License.

This chapter provides an introduction to libvirt and defines common terms that will be used throughout
the guide.

Overview

Libvirt provides a common, generic and stable layer to securely manage domains on a node. As nodes
may be remotely located, libvirt provides all APIsrequired to provision, create, modify, monitor, control,
migrate and stop the domains, within the limits of hypervisor support for these operations. Although mul-
tiple nodes may be accessed with libvirt simultaneously, the APIs are limited to single node operations.

Libvirt is designed to work across multiple virtualization environments, which means that more common
capabilities are provided as APIs. Due to this, certain specific capabilities may not be provided. For ex-
ample, it does not provide high level virtualization policies or multi-node management features such as
load balancing. However, API stability ensures that these features can be implemented on top of libvirt.
To maintain thislevel of stability, libvirt seeksto isolate applications from the frequent changes expected
at the lower level of the virtualization framework.

Libvirt is intended as a building block for higher level management tools and applications focusing on
virtualization of a single node, with the only exception being domain migration between multiple node
capabilities. It provides APIsto enumerate, monitor and use the resources avail able on the managed node,
including CPUs, memory, storage, networking and Non-Uniform Memory Access (NUMA) partitions.
Although a management node can be located on a separate physical machine to the management program,
this should only be done using secure protocols.

Glossary of terms

To avoid ambiguity regarding terms and concepts used in this guide, refer to the following table for their
definitions.

Table 1.1. Terminology

Term Definition

Domain An instance of an operating system (or subsystem
in the case of container virtualization) running on a
virtualized machine provided by the hypervisor.

Hypervisor A layer of software alowing virtualization of a
nodein aset of virtual machines, which may have
different configurations to the node itself.

Node A single physical server. Nodes may be any one of
many different types, and are commonly referred
to by their primary purpose. Examples are storage
nodes, cluster nodes, and database nodes.

Storage Pool A collection of storage media, such as physical
hard drives. A Storage Pool is sub-divided into

Introduction

Term Definition
smaller containers called VVolumes, which may
then be alocated to one or more Domains.
Volume A storage space, allocated from a Storage Pool. A

Volume may be assigned to one or more Domains
for use, and are commonly used inside Domains as
virtual hard drives.

Chapter 2. Architecture

This chapter describes the main principles and architecture choi ces behind the definition of thelibvirt API.

Object model

The scope of the libvirt API is intended to extend to all functions necessary for deployment and man-
agement of virtual machines. This entails management of both the core hypervisor functions and host re-
sources that are required by virtual machines, such as networking, storage and PCI/USB devices. Most of
the API's exposed by libvirt have a pluggable internal backend, allowing support for different underlying
virtualization technologies and operating systems. Thus, the extent of the functionality available from an
particular API is determined by the specific hypervisor driver in use and the capabilities of the underlying
virtualization technology.

Hypervisor connections

A connection is the primary or top level object in the libvirt API. An instance of this object is required
before attempting to use almost any of the APIs. A connection is associated with a particular hypervisor,
which may be running locally on the same machine as the libvirt client application, or on a remote ma-
chine over the network. In all cases, the connection is represented with thevi r Connect Pt r object and
identified by a URI. The URI scheme and path defines the hypervisor to connect to, while the host part
of the URI determines where it islocated. Refer to the section called “URI formats® for afull description
of valid URIs.

An application is permitted to open multiple connections at the same time, even when using more than
one type of hypervisor on a single machine. For example, a host may provide both KVM full machine
virtualization and LXC container virtualization. A connection object may be used concurrently across
multiple threads. Once a connection has been established, it is possible to obtain handlesto other managed
objects or create new managed objects, as discussed in the section called “ Guest domains”.

Guest domains

A guest domain can refer to either arunning virtual machine or a configuration that can be used to launch
avirtual machine. The connection object provides APIsto enumerate the guest domains, create new guest
domains and manage existing domains. A guest domain is represented with the vi r Domai nPt r object
and has anumber of unique identifiers.

Uniqueidentifiers

* |D: positive integer, unique amongst running guest domains on a single host. An inactive domain does
not havean ID.

» name: short string, unigue amongst all guest domains on a single host, both running and inactive. To
ensure maximum portability between hypervisors, it is recommended that names only include alphanu-
meric (a - Z, 0 - 9), hyphen (-) and underscore(_) characters.

» UUID: 16 unsigned bytes, guaranteed to be unique amongst all guest domains on any host. RFC 4122
definesthe format for UUIDs and provides arecommended al gorithm for generating UUIDs with guar-
anteed uniqueness.

A guest domain may be transient or persistent. A transient guest domain can only be managed whileit is
running on the host. Once it is powered off, all trace of it will disappear. A persistent guest domain has

Architecture

its configuration maintained in a data store on the host by the hypervisor, in an implementation defined
format. Thuswhen apersistent guest is powered off, it is still possible to manage itsinactive configuration.
A transient guest can be turned into a persistent guest whileit is running by defining a configuration for it.

Refer to Chapter 4, Guest Domains for further information about using guest domain objects.

Virtual networks

A virtual network provides a method for connecting the network devices of one or more guest domains
within asingle host. The virtual network can either:

* Remainisolated to the host; or

» Allow routing of traffic off-node via the active network interfaces of the host OS. This includes the
option to apply NAT to IPv4 traffic.

A virtual network is represented by thevi r Net wor kPt r object and has two unique identifiers:

Uniqueidentifiers

* name: short string, unique amongst al virtual network on a single host, both running and inactive. For
maximum portability between hypervisors, applications should only usethe charactersa- Z, 0- 9, -, _
in names.

e UUID: 16 unsigned bytes, guaranteed to be unique amongst al virtual networks on any host. RFC
4122 defines the format for UUIDs and provides arecommended algorithm for generating UUIDs with
guaranteed uniqueness.

A virtual network may be transient or persistent. A transient virtual network can only be managed while
it it isrunning on the host. When taken offline, al traces of it will disappear. A persistent virtual network
has its configuration maintained in a data store on the host, in an implementation defined format. Thus
when a persistent network is brought offline, it is still possible to manage its inactive config. A transient
network can be turned into a persistent network on the fly by defining a configuration for it.

After installation of libvirt, every host will get asingle virtual network instance called 'default’, which pro-
vides DHCP servicesto guests and allows NAT'd | P connectivity to the host'sinterfaces. This serviceis of
most use to hosts with intermittent network connectivity. For example, laptops using wirel ess networking.

Refer to Chapter 6, Virtual Networks for further information about using virtual network objects.

Storage pools

The storage pool object provides a mechanism for managing all types of storage on a host, such as local
disk, logical volume group, iSCSI target, FibreChannel HBA and local/network file system. A pool refers
to aquantity storage that is able to be allocated to form individual volumes. A storage pool is represented
by thevi r St or agePool Pt r object and has apair of unique identifiers.

Uniqueidentifiers

» name: short string, unique amongst all storage pools on a single host, both running and inactive. For
maximum portability between hypervisors applications should only rely on being able to use the char-
actersa- Z, 0- 9, -, _ innames.

e UUID: 16 unsigned bytes, guaranteed to be unique amongst all storage pools on any host. RFC 4122
definesthe format for UUIDs and provides arecommended algorithm for generating UUIDs with guar-
anteed uniqueness.

Architecture

A storage pool may be transient, or persistent. A transient storage pool can only be managed while it is
running on the host and, when powered off, al trace of it will disappear (the underlying physical storage
still existsof course!). A persistent storage pool hasits configuration maintained in adata store on the host
by the hypervisor, in an implementation defined format. Thuswhen apersistent storage pool is deactivated,
it is till possible to manage its inactive config. A transient pool can be turned into a persistent pool on
the fly by defining a configuration for it.

Refer to Chapter 5, Sorage Pools for further information about using storage pool objects.

Storage volumes

The storage volume object provides management of an allocated block of storagewithin apool, beit adisk
partition, logical volume, SCSI/iSCSI LUN, or afile within alocal/network file system. Once allocated,
avolume can be used to provide disks to one (or more) virtual domains. A volume is represented by the
vi r St or ageVol Pt r object, and hasthreeidentifiers

Unique identifiers

» name: short string, unique amongst al storage volumes within a storage pool. For maximum porta-
bility between implementations applications should only rely on being able to use the characters a-
Z,0-9, -, innames. The nameis not guaranteed to be stable across reboots, or between hosts, even
if the storage pool is shared between hosts.

» Key: aopaque string, of arbitrary printable characters, intended to uniquely identify the volume within
the pool. The key isintended to be stable across reboots, and between hosts.

» Path: afile system path referring to the volume. The path is unique amongst all storage volumes on a
single host. If the storage pool is configured with a suitable target path, the volume path may be stable
across reboots, and between hosts.

Refer to the section called “Volume overview” for further information about using storage volume objects

Host devices

Host devices provide aview to the hardware devices available on the host machine. This covers both the
physical USB or PCI devicesand logical devicesthese provide, such asaNIC, disk, disk controller, sound
card, etc. Devices can be arranged to form a tree structure allowing relationships to be identified. A host
device is represented by the vi r NodeDevPt r object, and has one general identifier, though specific
device types may have their own unique identifiers.

Uniqueidentifiers

* name: short string, unigque amongst all devices on the host. The naming scheme is determined by the
host operating system. The name is not guaranteed to be stable across reboots.

Physical devices can be detached from the host OS drivers, which implicitly removesall associated logical
devices, and then assigned to a guest domain. Physical device information is also useful when working
with the storage and networking APIs to determine what resources are available to configure.

Refer to Chapter 8, Host Devices for further information about using host device objects.

Driver model

Thelibvirt library exposes a guaranteed stable APl & ABI which is decoupled from any particular virtu-
aization technology. In addition many of the APIs have associated XML schemata which are considered

Architecture

part of the stable ABI guarantee. Internally, there are multiple of implementations of the public ABI, each
targeting a different virtualization technology. Each implementation is referred to as a driver. When ob-
taining ainstance of thevi r Connect Pt r object, the application developer can provide a URI to deter-
mine which hypervisor driver is activated.

No two virtualization technologies have exactly the same functionality. The libvirt goal is not to restrict
applications to a lowest common denominator, since this would result in an unacceptably limited API.
Instead libvirt attemptsto define arepresentation of conceptsand configuration that is hypervisor agnostic,
and adaptableto allow future extensions. Thus, if two hypervisorsimplement acomparable feature, libvirt
provides a uniform control mechanism or configuration format for that feature.

If alibvirt driver does not implement a particular API, then it will return a VIR_ERR_NO_SUPPORT
error code enabling this to be detected. There is also an API to alow applications to the query certain
capabilities of a hypervisor, such as the type of guest ABIs that are supported.

Internally alibvirt driver will attempt to utilize whatever management channels are available for the vir-
tualization technology in question. For some drivers this may require libvirt to run directly on the host
being managed, talking to a local hypervisor, while others may be able to communicate remotely over
an RPC service. For drivers which have no native remote communication capability, libvirt provides a
generic secure RPC service. Thisis discussed in detail later in this chapter.

Hypervisor drivers

» Xen: Theopen source Xen hypervisor providing paravirtualized and fully virtualized machines. A single
system driver runsin the DomO host talking directly to a combination of the hypervisor, xenstored and
xend. Example local URI schemexen: // /.

* QEMU: Any open source QEMU based virtualization technology, including KVM. A single privileged
system driver runsin the host managing QEMU processes. Each unprivileged user account also has a
private instance of the driver. Example privileged URI scheme gerru: / / / syst em Example unpriv-
ileged URI schemegemnu: /// sessi on

e UML: The User Mode Linux kernel, a pure paravirtualization technology. A single privileged system
driver runs in the host managing UML processes. Each unprivileged user account also has a private
instance of the driver. Example privileged URI schemeumnd : / / / syst em Example unprivileged URI
schemeumrl : /// sessi on

» OpenVZ: The OpenVZ container based virtualization technology, using amodified Linux host kernel.
A single privileged system driver runsin the host talking to the OpenV Z tools. Example privileged URI
schemeopenvz: ///system

e LXC: The native Linux container based virtualization technology, available with Linux kernels since
2.6.25. A single privileged system driver runsin the host talking to the kernel. Example privileged URI
schemel xc:///

* Remote: Generic secure RPC servicetalkingto al i bvi rt d daemon. Encryption and authentication
using a choice of TLS, x509 certificates, SASL (GSSAPI/Kerberos) and SSH tunneling. URIs follow
the scheme of the desired driver, but with a hostname filled in, and a data transport name appended to
the URI scheme. Example URI to talk to Xen over a TLS channel xen+t | s: / / sonehost nane/ .
Example URI to talk to QEMU over a SASL channel genu+t cp: /// somehost / syst em

e Test: A mock driver, providing avirtual in-memory hypervisor covering all the libvirt APIs. Facilities
testing of applications using libvirt, by allowing automated tests to run which exercise libvirt APIs
without needing to deal with a real hypervisor Example default URI schemetest:///defaul t.
Example customized URI schemet est:///path/to/driver/config.xm

Architecture

Figure 2.1. libvirt driver architecture

Remote management

While many virtualization technol ogies provide a remote management capability, libvirt does not assume
this and provides a dedicated driver allowing for remote management of any libvirt hypervisor driver.
The driver has a variety of data transports providing considerable security for the data communication.
The driver is designed such that there is 100% functional eguivalence whether talking to the libvirt driver
locally, or viathe RPC service.

In addition to the native RPC service included in libvirt, there are a number of alternatives for remote
management that will not be discussed in thisdocument. Thel i bvi rt - qpi d project provides an agent
for the QPid messaging service, exposing al libvirt managed objects and operations over the message
bus. This keeps afairly close, near 1-to-1, mapping to the C API in libvirt. Thel i bvi rt - Cl Mproject
provides a CIM agent, that maps the libvirt object model onto the DMTF virtualization schema.

Basic usage

The server end of the RPC serviceisprovided by thel i bvi rt d daemon, which must berun on the host to
be managed. In an default deployment this daemon will only be listening for connection on alocal UNIX
domain socket. This only allows for a libvirt client to use the SSH tunnel data transport. With suitable
configuration of x509 certificates, or SASL credentials, thel i bvi rt d daemon can be told to listen on
a TCP socket for direct, non-tunneled client connections.

Ascan beseen from earlier examplelibvirt driver URIs, then hostnamefieldinthe URI isalwaysleft empty
for local libvirt connections. To make use of the libvirt RPC driver, only two changes are required to the
local URI. At least a hostname must be specified, at which point libvirt will attempt to usethe direct TLS
data transport. An alternative data transport can be requested by appending its name to the URI scheme.
The URIsformats will be described in detail later in this document the section called “ Remote URIS’

Data Transports

To cope with the wide variety of deployment environments, the libvirt RPC service supports a humber
of data transports, all of which can be configured with industry standard encryption and authentication
capabilities.

Table2.1. Transports

Transport Description

tls A TCP socket running the TLS protocol on the
wire. Thisisthe default data transport if noneis
explicitly requested, and uses a TCP connection on
port 16514. At minimum it is necessary to config-
ure the server with a x509 certificate authority and
issue it aserver certificate. Thel i bvi rt d server
can, optionally, be configured to require clientsto
present x509 certificates as a means of authentica-
tion.

tcp A TCP socket without the TLS protocol on the
wire. This data transport should not be used on un-

Architecture

Transport Description

trusted networks, unless the SASL authentication
service has been enabled and configured with a
plug-in that provides encryption. The TCP connec-
tion is made on port 16509.

unix A local only datatransport, allowing usersto con-
necttoal i bvi rt d daemon running as a differ-
ent user account. Asit is only accessible on the
local machine, it is unencrypted. The standard
socket namesare/ var/run/libvirt/1ib-
Vi rt - sock for full management capabilities and
[var/run/libvirt/libvirt-sock-ro
for a socket restricted to read only operations.

ssh The RPC datais tunneled over an SSH connec-
tion to the remote machine. It requires Netcat (nc)
isinstalled on the remote machine and that lib-
virtd is running with the UNIX domain socket en-
abled. It is recommended that SSH be configured
to not require password prompts to the client appli-
cation. For example, if using SSH public key au-
thentication it is recommended an ssh-agent by run
to cache key credentials. GSSAPI is another use-
ful authentication mode for the SSH transport al-
lowing use of apre-initialized Keberos credential
cache.

ext Any external program that can make a connec-
tion to the remote machine by means that are out-
side the scope of libvirt. If none of the built-in data
transports are satisfactory, this allows an applica-
tion to provide a helper program to proxy RPC da-
ta over a custom channel.

Authentication schemes

To cope with the wide variety of deployment environments, the libvirt RPC service supports a number
of authentication schemes on its data transports, with industry standard encryption and authentication ca-
pabilities. The choice of authentication scheme is configured by the administrator in the / et ¢/ 1 i b-
virt/libvirtd. conf file

Table 2.2. Schemes

Scheme Description

sadl SASL isaindustry standard for pluggable authen-
tication mechanisms. Each plug-in has awide va-
riety of capabilities and discussion of their mer-
itsis outside the scope of this document. For the

t | s datatransport there is awide choice of plug-
ins, since TLSis providing data encryption for the
network channel. For thet cp datatransport, lib-
virt will refuse to use any plug-in which does not
support data encryption. This effectively limitsthe
choice to GSSAPI/Kerberos. SASL can optionally

Architecture

Scheme

Description

be enabled on the UNIX domain socket data trans-
port if strong authentication of local usersisre-
quired.

polkit

PolicyKit is an authentication scheme suitable for
local desktop virtualization deployments, for use
only on the UNIX domain socket data transport.

It enables the libvirtd daemon to validate that the
client application is running within the local X
desktop session. It can be configured to allow ac-
cess to alogged in user automatically, or prompt
them to enter their own password, or the superuser
(root) password.

x509

Although not strictly an authentication scheme,
the TL S data transport can be configured to man-
date the use of client x509 certificates. The server
can then whitelist the client distinguished namesto
control access.

Generating TLS certificates

Libvirt supports TLS certificates for verifying the identity of the server and clients. There are two distinct

checksinvolved:

1. Theclient checksthat it is connecting to the correct server by matching the certificate the server sends
with the server's hosthame. This check can be disabled by adding ?no_veri f y=1. Referto Table 3.3,
“Extra parameters for remote URIS’ for details.

2. The server checks to ensure that only alowed clients are connected. Thisis performed using either:

a Theclient's P address; or

b. Theclient's |P address and the client's certificate.

Server checking may be enabled or disabled using the libvirtd.conf file.

For full certificate checking you will need to have certificatesissued by arecognized Certificate Authority
(CA) for your server(s) and al clients. To avoid the expense of obtaining certificates from a commercial
CA, thereisthe option to set up your own CA and tell your server(s) and clientsto trust certificatesissues
by your own CA. To do this, follow the instructions contained in the next section.

Be aware that the default configuration for libvirtd.conf allows any client to connect, provided that they
have avalid certificate issued by the CA for their own IP address. This setting may need to be made more
or less permissive, dependent upon your reguirements.

Public Key Infrastructure setup

Table 2.3. Public Key setup

L ocation Machine Description Required fields
[etc/pki/CAl cac- |Instaledonall clients |CA'scertificate n/a
ert.pem and servers

Architecture

L ocation Machine Description Required fields

letcl/pki/lib- Installed on the server | Server's private key n/a

virt/pri-

vat e/ server key. pem

[etc/ pkil Installed on the server | Server's certificate CommonName (CN)

libvirt/ signed by the CA must be the hostname of

servercert.pem the server asit is seen by
clients.

letc/pki/lib- Installed on the client | Client's private key. n/a

virt/pri-

vat e/ cl i en-

t key. pem

/ et c/ pki/ CAl cac- |Instaled ontheclient Client's certificate Distinguished Name

ert. pem signed by the CA (DN) can be checked
against an access con-
trol list (t | s_al -
| owed_dn_list).

10

Chapter 3. Connections

Inlibvirt, aconnection isthe underpinning of every action and object in the system. Every entity that wants
to interact with libvirt, beit virsh, virt-manager, or aprogram using thelibvirt library, needsto first obtain
a connection to the libvirt daemon on the host it is interested in interacting with. A connection describes
not only the type of virtualization technology that the agent wants to interact with (gemu, xen, uml, etc),
but also describes any authentication methods necessary to connect to that resource.

Overview

The very first thing a libvirt agent must do is call one of the libvirt connection functions to obtain a
vi r Connect Pt r handle. Thishandlewill be used in subsequent operations. Thelibvirt library provides
3 different functions for connecting to a resource:

vi rConnect Ptr virConnect Open(const char *namne)
vi rConnect Ptr virConnect OpenReadOnl y(const char *nane)
vi rConnect Ptr virConnect QpenAut h(const char *name, virConnect AuthPtr auth, int

In al three cases there is a nane parameter which in fact refers to the URI of the hypervisor to connect
to. The previous sections the section called “ Driver model” and the section called “ Remote URIS’ provide
full details on the various URI formats that are acceptable. If the URI is NULL then libvirt will apply
some heuristics and probe for a suitable hypervisor driver. While this may be convenient for developers
doing adhoc testing, it is strongly recommended that applications do not rely on probing logic sinceit may
change at any time. Applications should always explicitly request which hypervisor connection is desired
by providing a URI.

The difference between the three methods outlined above is the way in which they authenticate and the
resulting authorization level they provide.

virConnectOpen

The vi r Connect Open API will attempt to open a connection for full read-write access. It does not
have any scope for authentication callbacks to be provided, so it will only succeed for connections where
authentication can be done based on the credentials of the application.

Example 3.1. Using vir ConnectOpen

/* exanple exl.c */

/* conpile with: gcc -g -Wall exl.c -o ex -lvirt */
#i ncl ude <stdio. h>

#i nclude <stdlib. h>

#include <libvirt/libvirt.h>

int main(int argc, char *argv[])

{

vi rConnect Ptr conn;

conn = virConnect Open("qgenu:///systent);
if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");

11

Connections

return 1,
}
vi r Connect Cl ose(conn);
return O;

}

The above example opens up a read-write connection to the system gemu hypervisor driver, checks to
make sure it was successful, and if so closes the connection. For more information on libvirt URIs, refer
to the section called “URI formats’.

virConnectOpenReadOnly

Thevi r Connect OpenReadOnl y APl will attempt to open a connection for read-only access. Such a
connection has a restricted set of API callsthat are allowed, and is typically useful for monitoring appli-
cations that should not be allowed to make changes. Aswith vi r Connect OQpen, this APl has no scope
for authentication callbacks, so relies on credentials.

Example 3.2. Using vir ConnectOpenReadOnly

/* exanple ex2.c */

/* conpile with: gcc -g -Vll ex2.c -0 ex2 -lvirt */
#i ncl ude <stdio. h>

#i nclude <stdlib. h>

#include <libvirt/libvirt.h>

int main(int argc, char *argv[])

{

vi rConnect Ptr conn;

conn = virConnect OpenReadOnl y("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn"
return 1,

}

vi r Connect Cl ose(conn);

return O;

}

The above example opens up aread-only connection to the system gemu hypervisor driver, checksto make
sure it was successful, and if so closes the connection. For more information on libvirt URIs, refer to the
section called “URI formats’.

virConnectOpenAuth

Thevi r Connect OpenAut h APl isthe most flexible, and effectively obsoletes the previous two APIs.
It takes an extra parameter providing an instance of the vi r Connect Aut hPt r struct which contains
the callbacks for collecting authentication credentials from the client app. This allows libvirt to prompt
for usernames, passwords, and more. The libvirt APl provides an instance of this struct via the symbol
vi r Connect Aut hPt r Def aul t that implements callbacks suitable for acommand line based applica-
tion. Graphical applications will need to provide their own callback implementations. The flags parameter
allows the application to request a read-only connection with the VI R_CONNECT _ROflag if desired. A
simple example C program that usesvi r Connect QpenAut h with the default vi r Connect Aut hP-
trDefaul t is

12

Connections

Example 3.3. Using vir ConnectOpenAuth

/* exanple ex3.c */

/* conpile with: gcc -g -Wall ex3.c -0 ex3 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])

{

vi r Connect Ptr conn;

conn = virConnect OpenAut h("genu+t cp:/ /| ocal host/systent, virConnect Aut hPt r Def a
if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu+tcp://|ocal host/system
return 1,

}

vi r Connect Cl ose(conn);
return O;

}

To test the above program, the following configuration must be present:

1. /etc/libvirt/libvirtd. conf

listen tls =0
listen_tcp =1
auth_tcp = "sasl"

2. /etc/sasl 2/1ibvirt. conf

mech_Ilist: digest-nd5
3. A virt user has been added to the SASL database:

sasl passwd2 -a libvirt virt # this will pronmpt for a password
4. libvirtd has been started with - - [i st en

Once the aboveis configured, Example 3.3, “Using virConnectOpenAuth” should prompt for a username
and password and allow read-write access to libvirtd.

If additional functionality is needed, a custom credential callback can also be provided asin the following
program:

Example 3.4. Using a custom credential callback with vir ConnectOpenAuth

/* exanple ex4.c */

/* conpile with: gcc -g -Vall ex4.c -0 ex4 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

#i ncl ude <string. h>

13

Connections

static int authCreds[] = {
VI R_CRED_ AUTHNAME
VI R_CRED_PASSPHRASE

b

static int authCb(virConnectCredential Ptr cred, unsigned int ncred, void *cbhdata)
{

int i;

char buf[1024];

for (i = 0; i < ncred; i++) {
if (cred[i].type == VIR CRED AUTHNAME) ({
printf("%: ", cred[i].pronpt);

fflush(stdout);
fget s(buf, sizeof(buf), stdin);
buf [strlen(buf) - 1] = '"\0";
cred[i].result = strdup(buf);
if (cred[i].result == NULL)
return -1,
cred[i].resultlen = strlen(cred[i].result);

}
else if (cred[i].type == VIR CRED PASSPHRASE) ({
printf("%: ", cred[i].pronpt);
fflush(stdout);
fgets(buf, sizeof(buf), stdin);
buf [strlen(buf) - 1] = '"\0";
cred[i].result = strdup(buf);
if (cred[i].result == NULL)
return -1,
cred[i].resultlen = strlen(cred[i].result);

}

return O;

int main(int argc, char *argv[])

vi rConnect Ptr conn;
vi r Connect Aut h aut h;

aut h. credtype = aut hCreds;

aut h. ncredtype = si zeof (aut hCreds)/si zeof (int);
aut h. cb = aut hCb;

aut h. cbdata = NULL;

conn = virConnect OpenAut h("qermu+tcp:/ /| ocal host/systen', &auth, 0);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu+tcp://|ocal host/system
return 1,

}

vi r Connect Cl ose(conn);

return O;

14

Connections

The same configuration as Example 3.3, “Using virConnectOpenAuth” must be present in order to test
Example 3.4, “Using a custom credential callback with virConnectOpenAuth”. The first thing to note here
istheuse of avi r Connect Aut h structure, which looks like the following:

struct _virConnect Auth {
int *credtype; /* List of supported virConnectCredential Type val ues */
unsi gned int ncredtype;

vi r Connect Aut hCal | backPtr cb; /* Callback used to collect credentials */
voi d *cbdat a;

s

typedef struct _virConnect Auth virConnect Aut h;

The credtype member points to an array of integers that represent the type of credentials this callback is
willing to support. In Example 3.4, “Using a custom credential callback with virConnectOpenAuth” the
authCreds array specifies all of the types that authCb supports; the full list of credential typesis available
in libvirt.h. The ncredtype member specifies the size of the credtype array. The cb member is afunction
pointer which specifies the callback that will be used when necessary; its signature must be:

typedef int (*virConnectAut hCal |l backPtr) (virConnectCredential Ptr cred,
unsi gned int ncred,
voi d *chdata);

Finally, the chdata member is a pointer that can point to additional data needed by the callback; in Ex-
ample 3.4, “Using a custom credential callback with virConnectOpenAuth”, thisis not used so it is set
to NULL.

After setting up the auth structure, Example 3.4, “Using acustom credential callback with virConnectOpe-
nAuth” goeson to use this structureinthevi r Connect QpenAut h function. When the libvirt internals
require credentials, the callback in auth.cb (authCh) will be called. The cred parameter to this function
isan array of vi r Connect Cr edent i al structures (described below) that libvirt needs to finish the
authentication. The ncred parameter specifies the size of the cred array. Finally, the cbhdata parameter isa
pointer that contains the value passed in from auth.chdata.

It isthe responsibility of the auth.cb callback to examine each of thevi r Connect Cr edent i al struc-
tures and collect the necessary credentials. Thevi r Connect Cr edent i al structure lookslike:

struct _virConnect Credential {
int type; /* One of virConnectCredential Type constants */
const char *pronpt; /* Pronmpt to show to user */
const char *challenge; /* Additional challenge to show */
const char *defresult; /* Optional default result */
char *result; /* Result to be filled with user response (or defresult) */
unsigned int resultlen; /* Length of the result */
b

typedef struct _virConnect Credential virConnectCredenti al;

In the case of example 4, authCb only handles VIR CRED AUTHNAME and
VIR_CRED_PASSPHRASE, so for each of these credential typesit prints out a prompt from the creden-
tial structure, collects the information into a temporary buffer, and then copies that buffer into the result
and resultlen of that particular credential. Handling acredential but leaving result or resultlen asOisapro-
gramming error. If collection of all credentialsis successful, auth.cb should return O; otherwise, it should
return -1 and libvirt will fail the connection.

15

Connections

virConnectClose

A connection must be released by calling vi r Connect C ose when no longer required. Connections
arereference counted objects, soif it isintended for aconnection to be used from multiple threads at once,
each additional thread should call vi r Connect Ref to ensure the connection is not freed while still in
use. Every extracall to vi r Connect Ref must be accompanied by a corresponding call to vi r Con-

nect Cl ose to release the reference when no longer required. An example program that uses additional
references:

Example 3.5. Using vir ConnectClose with additional references

/* exanple ex5.c */

/* conpile with: gcc -g -Vall ex5.c -0 ex5 -lvirt */
#i ncl ude <stdio. h>

#i nclude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])

{
vi rConnect Ptr conn;
conn = virConnect Open("qgenu:///systent);
if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,
}
/* now the connection has a single reference to it */
vi r Connect Ref (conn);
/* now the connection has two references to it */
vi r Connect Cl ose(conn);
/* now the connection has one reference */
vi r Connect Cl ose(conn);
/* now the connection has no references, and has been garbage
* collected - it should no | onger be used */
return O;
}

Also note that every other object associated with a connection (virDomainPtr, virNetworkPtr, etc) will
also hold a reference on the connection. To avoid leaking a connection object, applications must ensure
all associated objects are also freed.

URI formats

Libvirt uses Uniform Resource Identifiers (URIS) to identify hypervisor connections. Both local and re-
mote hypervisors are addressed by libvirt using URIs. The URI scheme and path defines the hypervisor to
connect to, while the host part of the URI determines where it is located.

16

Connections

Local URIs

Libvirt local URIs have one of the following forms:

driver:///system
driver:///session
driver+unix:///system
driver+uni x:///session

All other usesof thelibvirt URIsare considered remote, and behave as such, evenif connecting to localhost.
See the section called “Remote URIS’ for details on remote URIs.

The following drivers are currently supported:

Table 3.1. Supported Drivers

Driver Description

gemu For managing gemu and KVM guests

xen For managing old-style (Xen 3.1 and older) Xen
guests

xenapi For managing new-style Xen guests

uml For for managing UML guests

Ixc For managing Linux Containers

vbox For managing Virtual Box guests

openvz For managing OpenV Z containers

esx For managing VMware ESX guests

one For mmanaging OpenNebula guests

phyp For managing Power Hypervisor guests

The following example shows how to local to a QEMU hypervisor using alocal URI.

Example 3.6. Connecting to alocal QEM U hypervisor

/* exanpl e ex6.c */

/* conpile with: gcc -g -Wall ex6.c -0 ex6 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])

{

vi rConnect Ptr conn;

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

vi r Connect Cl ose(conn);

return O;

17

Connections

Remote URIs

Remote URIs have the general form ("[...]" meaning an optional part):
driver[+transport]://[usernane@[host nane][: port]/[path][?extraparaneters]

Each component of the URI is described below.

Table 3.2. URI components

Component Description

driver The name of the libvirt hypervisor driver to con-
nect to. Thisisthe same asthat used in alo-

cal URI. Some examplesarexen, gemnu, | xc,
openvz,andt est . Asaspecia case, the psue-
do driver namer enot e can be used, which will
cause the remote daemon to probe for an active hy-
pervisor and pick oneto use. Asageneral ruleif
the application knows what hypervisor it wants, it
should always specify the explicit driver name and
not rely on automatic probing.

transport The name of one of the data transports described
earlier in this section. Possible valuesincludet | s,
t cp, uni x, ssh and ext . If omitted, it will de-
faulttot | s if ahosthameis provided, or uni x if
no hostname is provided.

username When using the SSH data transport this allows
choice of ausername that differs from the client's
current login name.

hosthame The fully qualified hosthame of the remote ma-
chine. If using TLS with x509 certificates, or
SASL with the GSSAPI/Keberos plug-in, it is crit-
ical that this hostname match the hostname used in
the server's x509 certificates / Kerberos principle.
Mis-matched hostnames will guarantee authentica-
tion failures.

port Rarely needed, unless SSH or libvirtd has been
configured to run on a non-standard TCP port. De-
faultsto 22 for the SSH data transport, 16509 for
the TCP data transport and 16514 for the TLS da-
ta transport.

path The path should be the same path used for the hy-
pervisor driver'slocal URIs. For Xen, thisis al-
waysjust/ , while for QEMU thiswould be/
system

extraparameters The URI query parameters provide the mean to
fine tune some aspects of the remote connection,
and are discussed in depth in the next section.

Based on the information described here and with reference to the hypervisor specific URIs earlier in this
document, it is now possible to illustrate some example remote access URIs.

18

Connections

Connect to aremote Xen hypervisor on host node. exanpl e. comusing ssh tunneled
datatransport and ssh usernamer oot : xen+ssh: / / r oot @vode. exanpl e. coni

Connect to aremote QEMU hypervisor on host node. exanpl e. comusing TLSwith
x509 certificates: geru: / / node. exanpl e. conif syst em

Connect to aremote Xen hypervisor on host node. exanpl e. comusing TLS, skip-
ping verification of the server's x509 certificate (NB: thisis compromising your securi-
ty): xen: / / node. exanpl e. conf ?no_veri fy=1

Connect to the local QEMU instances over a non-standard Unix socket (the full path to
the Unix socket issupplied explicitly inthiscase): genu+uni x: / / / syst enf’sock-
et=/opt/libvirt/run/libvirt/libvirt-sock

Connect to alibvirtd daemon offering unencrypted TCP/IP connections on an alterna-
tive TCP port 5000 and use the test driver with default configuration: t est +t cp: //
node. exanpl e. com 5000/ def aul t

Extra parameters. Extra parameters can be added to remote URIs as part of the query string (the
part following "?"). Remote URIs understand the extra parameters shown below. Any others are passed
unmodified through to the backend. Note that parameter values must be URI-escaped. Refer to http:/
xmlsoft.org/html/libxml-uri.html#xmlURIEscapeStr for more information.

Table 3.3. Extra parametersfor remote URIs

Name Transports Description

nane any transport Thelocal hypervisor URI passed
to the remote virConnectOpen
function. ThisURI is normally
formed by removing transport,
hostname, port number, user-
name and extra parameters from
the remote URI, but in certain
very complex casesit may be
necessary to supply the name ex-
plicitly. Example: nane=qge-
nmu:///system

command ssh, ext The external command. For ext
transport thisis required. For
ssh the default is ssh. The PATH
is searched for the command.
Example: conmmand=/ opt /
openssh/ bi n/ ssh

socket unix, ssh The external command. For ext
transport thisis required. For ssh
thedefaultisssh. The PATH is
searched for the command. Ex-
ample: socket =/ opt/1i b-
virt/run/libvirt/lib-
virt-sock

netcat ssh The name of the netcat command
on the remote machine. The de-
fault is nc. For ssh transport, lib-

19

http://xmlsoft.org/html/libxml-uri.html#xmlURIEscapeStr
http://xmlsoft.org/html/libxml-uri.html#xmlURIEscapeStr

Connections

Name Transports Description

virt constructs an ssh command
which looks like:

command -p port [-1 usernane]

Where port, username, hostname
can be specified as part of the re-
mote URI, and command, netcat
and socket come from extra para-
meters (or sensible defaults). Ex-
ample: net cat =/ opt / net -
cat/ bin/nc

no_verify tls Client checks of the server's cer-
tificate are disable if anon-zero
valueis set. Note that to disable
server checks of the client's cer-
tificate or 1P address you must

change the libvirtd configura-

tion. Example: no_veri fy=1

no_tty ssh If set to anon-zero value, this
stops ssh from asking for a pass-
word if it cannot log in to the
remote machine automatical -

ly (For example, when using a
ssh-agent). Use thiswhen you
don't have accessto atermina

- for example in graphical pro-
grams which use libvirt. Exam-
pleno_tty=1

The following example shows how to local to a QEMU hypervisor using aremote URI.

Example 3.7. Connecting to a remote QEM U hyper visor

/* exanple ex7.c */

/[* conpile with: gcc -g -Wall ex7.c -0 ex7 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])

{

vi rConnect Ptr conn;

conn = virConnect Open("qgenu+tls://host2/system');
if (conn == NULL) {

host n

fprintf(stderr, "Failed to open connection to genu+tls://host2/systemn");

return 1;

}

vi r Connect Cl ose(conn);
return O;

20

Connections

}
Capability information

Thevi r Connect Get Capabi | i ti es API call can beused to obtain information about the capabilities
of the virtualization host. It takes a connection pointer in and, if successful, returns a string containing
the capabilities XML (described below). If an error occurred, NULL will be returned instead. It is the
responsibility of thecaller to freethememory returned fromthis API call. Thefollowing code demonstrates
theuseof vi r Connect Get Capabi liti es:

Example 3.8. Using vir ConnectGetCapabilities

/* exanple ex8.c */

/* conpile with: gcc -g -Wall ex8.¢c -o ex8 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])
{

vi r Connect Ptr conn;

char *caps;

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

caps = virConnect Get Capabilities(conn);
fprintf(stdout, "Capabilities:\n%\n", caps);
free(caps);

vi r Connect Cl ose(conn);
return O;

}

The capabilities XML format provides information about the host virtualization technology. In particular,
it describes the capabilities of the virtualization host, the virtualization driver, and the kinds of guests that
the virtualization technology can launch. Note that the capabilities XML can (and does) vary based on the
libvirt driver in use. An example capabilities XML looks like:

Example 3.9. Example QEMU driver capabilities

<capabilities>
<host >
<cpu>
<ar ch>x86_64</ ar ch>
</ cpu>
<m gration_features>
<livel>
<uri_transports>

21

Connections

<uri_transport>tcp</uri_transport>
</uri_transports>
</mgration_features>
<t opol ogy>
<cells nun¥' 1'>
<cell id="0">
<cpus nun¥' 2'>
<cpu id="0"/>
<cpu id="1"/>
</ cpus>
</cell>
</cells>
</t opol ogy>
</ host >

<guest >

<os_type>hvnx/ os_type>

<arch name='i 686" >
<wor dsi ze>32</ wor dsi ze>
<enul at or >/ usr/ bi n/ genmu</ emul at or >
<machi ne>pc</ machi ne>
<machi ne>i sapc</ machi ne>
<domai n type='gemu' >
</ domai n>
<domai n type='kvm >

<enul at or >/ usr/ bi n/ gemu- kvnx/ enul at or >

</ domai n>

</ arch>

<f eat ur es>
<pae/ >
<nonpae/ >
<acpi default="on' toggle="yes' />
<api c default="on' toggle="no' />

</features>

</ guest >

<guest >
<os_type>hvnx/ os_type>
<arch nanme=' x86_64"' >
<wor dsi ze>64</ wor dsi ze>
<enul at or >/ usr/ bi n/ genmu- syst em x86_64</ erul at or >
<machi ne>pc</ machi ne>
<machi ne>i sapc</ machi ne>
<domai n type='gemu' >
</ domai n>
<domai n type='kvm >
<enul at or >/ usr/ bi n/ gemu- kvix/ enul at or >
</ domai n>
</ arch>
<f eat ur es>
<acpi default="on
<api c defaul t="on
</features>
</ guest >

t oggl e=' yes' / >
toggl e='no' / >

22

Connections

</ capabilities>

(therest of thediscussion will refer back to this XML using X Path notation). In the capabilities XML, there
is always the / host sub-document, and zero or more / guest sub-documents (while zero guest sub-
documents are allowed, this means that no guests of this particular driver can be started on this particular
host).

The/ host sub-document describes the capabilities of the host.

/ host / uui d showsthe UUID of the host. Thisis derived from the SMBIOS UUID if it isavailable and
valid, or can be overridden in libvirtd.conf with a custom vaue. If neither of the above are properly set, a
temporary UUID will be generated each time that libvirtd is restarted.

The/ host / cpu sub-document describes the capabilities of the host's CPUs. It is used by libvirt when
deciding whether a guest can be properly started on this particular machine, and is also consulted during
live migration to determine if the destination machine supplies the necessary flags to continue to run the
guest.

/ host/ cpu/ ar ch isarequired XML node that describes the underlying host CPU architecture. As of
thiswriting, all libvirt driversinitialize this from the output of uname(2).

/ host / cpul/ f eat ur es isan optiona sub-document that describes additional cpu features present on
the host. As of this writing, it is only used by the xen driver to report on the presence or lack of the sym
or vmx flag, and to report on the presence or lack of the pae flag.

/ host / cpu/ ar ch isarequired XML node that describes the underlying host CPU architecture. As of
thiswriting, al libvirt driversinitialize this from the output of uname(2).

/ host / cpu/ model isanoptional el ement that describesthe CPU model that the host CPUsmost closely
resemble. Thelist of CPU modelsthat libvirt currently know about are in the cpu_map.xml file.

/ host/ cpu/ f eat ur e are zero or more elements that describe additional CPU features that the host
CPUs have that are not covered in/ host / cpu/ nodel

/ host/ cpu/ f eat ur es isan optiona sub-document that describes additional cpu features present on
the host. As of thiswriting, it is only used by the xen driver to report on the presence or lack of the sym
or vmx flag, and to report on the presence or lack of the pae flag.

The/ host/ mi grati on_f eat ur es isanoptiona sub-document that describesthe migration features
that this driver supports on this host (if any). If this sub-document does not exist, then migration is not
supported. As of thiswriting, the xen, gemu, and esx drivers support migration.

/host/ m gration_features/live XML nodeexistsif the driver supports live migration

/host/ mgration_features/uri_transports isanoptional sub-document that describes al-
ternate migration connection mechanisms. These alternate connection mechanisms can be useful on mul-
ti-homed virtualization systems. For instance, the virsh migrate command might connect to the source
of the migration via 10.0.0.1, and the destination of the migration via 10.0.0.2. However, due to security
policy, the source of the migration might only be allowed to talk directly to the destination of the migra-
tion via 192.168.0.0/24. In this case, using the alternate migration connection mechanism would allow
this migration to succeed. As of this writing, the xen driver supports the alternate migration mechanism
"xenmigr", while the gemu driver supports the alternate migration mechanism "tcp". Please see the docu-
mentation on migration for more information.

23

Connections

The/ host / t opol ogy sub-document describes the NUMA topology of the host machine; each NU-
MA nodeisrepresented by a/ host / t opol ogy/ cel | s/ cel | , and describeswhich CPUs are in that
NUMA node. If the host machineisa UMA (non-NUMA) machine, then there will be only one cell and
all CPUs will be in this cell. This is very hardware-specific, so will necessarily vary between different
machines.

/ host / secnodel isan optional sub-document that describes the security model in use on the host.
/ host / secnodel / model shows the name of the security model while / host / secnodel / doi
shows the Domain Of Interpretation. For more information about security, please see the Security section.

Each / guest sub-document describes a kind of guest that this host driver can start. This description
includes the architecture of the guest (i.e. 1686) along with the ABI provided to the guest (i.e. hvm, xen,
or uml).

/ guest/ os_t ype isarequired element that describes the type of guest.

Table 3.4. Guest Types

Driver Guest Type

gemu Always"hvm"

xen Either "xen" for a paravirtualized guest or "hvm"
for afully virtualized guest

uml Always "uml"

Ixc Always "exe"

vbox Always"hvm"

openvz Always "exe"

one Always "hvm"

ex Not supported at thistime

/ guest / ar ch istheroot of an XML sub-document describing various virtual hardware aspects of this
guest type. It has asingle attribute called "name", which can be used to refer back to this sub-document.

/ guest / ar ch/ wor dsi ze isarequired element that describes how many bits per word this guest type
uses. Thisistypically 32 or 64.

/ guest / arch/ emul at or is an optional element that describes the default path to the emulator for
this guest type. Note that the emulator can be overridden by the/ guest / ar ch/ domai n/ enul at or
element (described below) for guest types that need alternate binaries.

/ guest/ arch/ | oader isan optiona element that describes the default path to the firmware loader
for this guest type. Note that the default loader path can be overridden by the / guest / ar ch/ do-
mai n/ | oader element (described below) for guest types that use alternate loaders. At present, thisis
only used by the xen driver for HYM guests.

There can be zero or more / guest / ar ch/ machi ne elements that describe the default types of ma-
chines that this guest emulator can emulate. These "machines’ typically represent the ABI or hardware
interface that aguest can be started with. Note that these machine types can be overridden by the/ guest /

ar ch/ domai n/ machi ne elements (described below) for virtualization technologiesthat provide alter-
nate machine types. Typical values for this are "pc", and "isapc", meaning a regular PCl based PC, and
an older, 1SA based PC, respectively.

There can be zero or more / guest / ar ch/ domai n XML sub-trees (although with zero /guest/arch/
domain XML sub-trees, no guests of this driver can be started). Each / guest / ar ch/ domai n XML

24

Connections

sub-tree has optional <emulator>, <loader>, and <machine> elementsthat override the respective defaults
specified above. For any of the elements that are missing, the default values are used.

The/ guest / f eat ur es optional sub-document describes various additional guest features that can be
enabled or disabled, along with their default state and whether they can be toggled on or off.

Host information

There are various APIs that can be used to get information about the virtualization host, including the
hostname, maximum support guest CPUSs, etc.

virConnectGetHostname

The vir ConnectGetHostname API call can be used to obtain the hosthame of the virtualization host as
returned by gethostname(2). It takes a connection pointer in and, if successful, returns a string containing
the hostname. If an error occurred, NULL will be returned instead. It is the responsibility of the caller
to free the memory returned from this API call. The following code demonstrates the use of vir Connect-
GetHostname:

Example 3.10. Using vir ConnectGetHostname

/* exanple ex9.c */

/* conpile with: gcc -g -Vall ex9.c -0 ex9 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])
{

vi r Connect Ptr conn;

char *host;

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1;

}

host = vir Connect Get Host nanme(conn) ;
fprintf(stdout, "Hostname: %\n", host);
free(host);

vi r Connect Cl ose(conn);
return O;

}
virConnectGetMaxVcpus

Thevir ConnectGetM axVcpus API call can be used to obtain the maximum number of virtual CPUs per-
guest the underlying virtualization technology supports. It takes a connection pointer and a virtualization
"type" as input (which can be NULL), and if successful, returns the number of virtual CPUs supported.
If an error occurred, -1 is returned instead. The following code demonstrates the use of vir ConnectGet-
MaxVcpus:

25

Connections

Example 3.11. Using vir ConnectGetM axV cpus

/* exanple ex10.c */

/* conpile with: gcc -g -Wall ex10.c -0 ex10 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])
{

vi r Connect Ptr conn;

i nt vcpus;

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

vcpus = virConnect Get MaxVcpus(conn, NULL);
fprintf(stdout, "Maximm support virtual CPUs: %\ n", vcpus);

vi r Connect Cl ose(conn);
return O;

}
virNodeGetFreeMemory

ThevirNodeGetFreeM emory API call can be used to obtain the total amount of free memory on the vir-
tualization host. It takes aconnection pointer asinput, and if successful returns the amount of free memory
as an unsigned long long. If an error occurred, O is returned instead. The following code demonstrates the
use of virNodeGetFreeM emory:

Example 3.12. Using vir NodeGetFreeM emory

/* exanple exll.c */

/[* conpile with: gcc -g -Wall exl1l.c -o ex11l -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])
{
vi rConnect Ptr conn;
unsi gned | ong | ong node_free_nenory;

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

node_free_nenory = virNodeGet FreeMenory(conn);

26

Connections

fprintf(stdout, "Node free nenory: % I|u\n", node_free_nenory);

vi r Connect Cl ose(conn);
return O;

}
virNodeGetinfo

The virNodeGetInfo API call can be used to obtain various information about the virtualization host. It
takes a connection pointer and a virNodelnfo pointer (allocated by the caller) as input, and if successful
returns 0 and fillsinthe virNodel nfo structure. If an error occurred, -1 isreturned instead. The virNodel nfo
structure contains the following members:

Table 3.5. virNodel nfo structure members

M ember Description

char model[32] string indicating the CPU model

unsigned long memory memory size in kilobytes

unsigned int cpus the number of active CPUs

unsigned int mhz expected CPU frequency

unsigned int nodes the number of NUMA nodes, 1 for uniform memo-
ry access

unsigned int sockets number of CPU sockets per node

unsigned int cores number of cores per socket

unsigned int threads number of threads per core

The following code demonstrates the use of vir NodeGetl nfo:

Example 3.13. Using vir NodeGetl nfo

/* exanple ex12.c */

/[* conpile with: gcc -g -Wall ex12.c -0 ex12 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])

{

vi rConnect Ptr conn;
vi r Nodel nf o nodei nf o;

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

vi r NodeCet | nf o(conn, &nodei nf o) ;

fprintf(stdout, "Mddel: %\n", nodeinfo. nodel);

27

Connections

fprintf(stdout, "Menory size: 9% ukb\n", nodeinfo. nmenory);

fprintf(stdout, "Nunber of CPUs: %\n", nodeinfo.cpus);

fprintf(stdout, "Miz of CPUs: %\n", nodeinfo.mnhz);

fprintf(stdout, "Nunber of NUMA nodes: %\n", nodeinfo. nodes);
fprintf(stdout, "Nunber of CPU sockets: %u\n", nodei nfo.sockets);
fprintf(stdout, "Nunber of CPU cores per socket: %\n", nodeinfo.cores);
fprintf(stdout, "Nunber of CPU threads per core: %\n", nodeinfo.threads);

vi r Connect Cl ose(conn);
return O;

}
virNodeGetCellsFreeMemory

The virNodeGetCellsFreeM emory API call can be used to obtain the amount of free memory (in kilo-
bytes) in some or all of the NUMA nodes in the system. It takes as input a connection pointer, a pre-
allocated array of unsigned long longs, and a maximum number of cellsto retrieve datafrom (usually the
size of the unsigned long long array). If successful, the array elements are filled in with the amount of free
memory in each node, and the number of filled nodesis returned. On failure -1 is returned. The following
code demonstrates the use of virNodeGetCellsFreeM emory:

Example 3.14. Using vir NodeGetCellsFreeM emory

/* exanple ex13.c */

[* conpile with: gcc -g -Wall ex13.c -0 ex13 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])
{
vi r Connect Ptr conn;
vi r Nodel nf o nodei nf o;
unsi gned long long *freemem
int i;
i nt numodes;

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

/* first, get the node info. This includes the nunber of nodes
* in the host in nodeinfo.nodes
*/

vi r NodeCet | nf o(conn, &nodei nfo);

/* allocate an array to hold all of the node free nenory information */
freemem = mal | oc(nodei nf 0. nodes * si zeof (unsigned | ong |ong));

/* fetch all the numa node free nenory information fromlibvirt */
numodes = vir NodeGet Cel | sFreeMenory(conn, freenem 0, nodei nfo.nodes);

28

Connections

for (i = 0; i < numodes; i ++)
fprintf(stdout, "Node %l: %I ukb free menory\n", i, freenmenii]);

free(freenmem;

vi r Connect Cl ose(conn);
return O;

}
virConnectGetType

The virConnectGetType API call can be used to obtain the type of virtualization in use on this connec-
tion. It takes a connection pointer asinput, and if successful returns a string representing the type of virtu-
alization in use. This string should not be freed by the caller. If an error occurred, NULL will be returned
instead. The following code demonstrates the use of vir ConnectGetType:

Example 3.15. Using vir ConnectGet Type

/* exanple exl4.c */

[* conpile with: gcc -g -Vall exl1l4.c -o ex14 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])

{

vi rConnect Ptr conn;

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

fprintf(stdout, "Virtualization type: %\n", virConnect Get Type(conn));

vi r Connect Cl ose(conn);
return O;

}
virConnectGetVersion

Thevir ConnectGetVersion API call can be used to obtain the version of the host virtualization softwarein
use. It takes a connection pointer and unsigned long pointer asinput, and if successful fillsin the unsigned
long with the version. On success it returns O and if a failure occured returns -1. The following code
demonstrates the use of vir ConnectGetVersion:

Example 3.16. Using vir ConnectGetVersion

/* exanpl e ex15.c */

/[* conpile with: gcc -g -Wall ex15.c -0 ex15 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

29

Connections

#include <libvirt/libvirt.h>

int main(int argc, char *argv[])
{

vi rConnect Ptr conn;

unsi gned | ong ver;

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

vi r Connect Get Ver si on(conn, &ver);
fprintf(stdout, "Version: %u\n", ver);

vi r Connect Cl ose(conn);
return O;

}
virConnectGetLibVersion

The vir ConnectGetLibVersion API call can be used to obtain the version of the libvirt software in use
on the host. It takes a connection pointer and unsigned long pointer as input, and if successful fills in
the unsigned long with the libvirt version. On success it returns 0 and if afailure occured returns -1. The
following code demonstrates the use of vir ConnectGetL ibVersion:

Example 3.17. Using vir ConnectGetLibVersion

/* exanpl e ex16.c */

/[* conpile with: gcc -g -Wall ex16.c -0 ex16 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])
{

vi rConnect Ptr conn;

unsi gned | ong ver;

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

vi r Connect Get Li bVer si on(conn, &ver);
fprintf(stdout, "Libvirt Version: %u\n", ver);

vi r Connect Cl ose(conn);
return O;

30

Connections

virConnectGetURI

The vir ConnectGetURI API call can be used to obtain the URI for the current connection. While thisis
typically the same string that was passed into the vir ConnectOpen call, the underlying driver can some-
times canonicalize the string. This API call will return the canonical version. It takes a connection pointer
asinput and if successful, returnsa URI string that must be freed by the caller. If an error occurred, NULL
will be returned instead. The following code demonstrates the use of vir ConnectGetURI :

Example 3.18. Using vir ConnectGetURI

/* exanple exl7.c */

/* conpile with: gcc -g -Vall exl1l7.c -0 ex17 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])
{

vi r Connect Ptr conn;

char *uri;

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

uri = virConnect Get URI (conn);
fprintf(stdout, "Canonical URI: %\n", uri);
free(uri);

vi r Connect Cl ose(conn);
return O;

}
virConnectIlsEncrypted

The vir ConnectlsEncrypted API call can be used to find out if a given connection is encrypted. It takes
a connection pointer as input, and if successful returns 1 for an encrypted connection and O for an unen-
crypted connection. If an error occurred, -1 will be returned. The following code demonstrates the use of
vir Connectl sEncrypted:

Example 3.19. Using vir Connectl sEncrypted

/* exanple ex18.c */

/* conpile with: gcc -g -Wall ex18.c -0 ex18 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])

{

31

Connections

vi rConnect Ptr conn;

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

fprintf(stdout, "Connection is encrypted: %\ n", virConnectlsEncrypted(conn));

vi r Connect Cl ose(conn);
return O;

}
virConnectlsSecure

Thevir Connectl sSecure API call can be used to find out if agiven connection isencrypted. A connection
will be classified secure if it is either encrypted or it is running on a channel which is not vulnerable to
eavsdropping (likea UNIX domain socket). It takes a connection pointer asinput, and if successful returns
1 for a secure connection and O for an insecure connection. If an error occurred, -1 will be returned. The
following code demonstrates the use of vir ConnectlsSecure:

Example 3.20. Using vir Connectl sSecure

/* exanple ex19.c */

/* conpile with: gcc -g -Vall ex19.c -0 ex19 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])

{

vi r Connect Ptr conn;

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}
fprintf(stdout, "Connection is secure: %\ n", virConnectlsSecure(conn));

vi r Connect Cl ose(conn);
return O;

}
Event loop integration

The libvirt APIs use a basic request/response architecture that is generally synchronous. That is, alibvirt
application callsalibvirt API (the request) which doesn't return until the action is complete (the response).
However, alibvirtd server can also generate asynchronous messages and send them to the libvirt appli-
cation; a typical usage of these messages is to inform the libvirt client when a domain has undergone a
lifecycle change (like shutdown or restart).

32

Connections

The libvirt event loop APIs alow an application to register for these asynchrounous events and properly
handle them.

Thevir Event Regi st er | npl API registers a set of callbacks that libvirt will call when adding, up-
dating, or removing a handle to watch.

Security model

The libvirt security model is known as svirt, and is designed to protect the host from guest domains, and
guest domainsfrom other guest domains. It works by putting each guest and guest disk into its own security
domain, using whatever facilities are available to do so on the virtualization host. For the most part, svirt
isinvisible to application developers and need not be explored. Thereisasingle libvirt API that provides
information about the security model in use.

The virNodeGetSecurityModel API call can be used to find out the security model and DOI (Domain
of Interpretation) in use on the virtualization host. It takes a connection pointer and a virSecurityM odel
pointer asinput, and if successful fillsin the virSecurityModel structure with the appropriate information.
On success it returns O; if an error occurred, -1 is returned. The following code demonstrates the use of
virNodeGetSecurityM odel:

Example 3.21. Using vir NodeGet SecurityM odel

/* exanple ex20.c */

/* conpile with: gcc -g -Wall ex20.c -0 ex20 -lvirt */
#i ncl ude <stdio. h>

#i nclude <stdlib. h>

#include <libvirt/libvirt. h>

int main(int argc, char *argv[])

{
vi r Connect Ptr conn;
vi rSecurityMdel secnodel;
conn = virConnect Open("qgenu:///systent);
if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,
}
vi r NodeCGet Securi t yMbdel (conn, &secnodel);
fprintf(stdout, "Security Model: %\n", secnodel.nodel);
fprintf(stdout, "Security DO : %\ n", secnodel . doi);
vi r Connect Cl ose(conn);
return O;
}

Error handling

The libvirt error APIs are designed to give more detailed information about what caused a failure in the
case that anormal libvirt API returned an error. An important thing to note about libvirt error reporting
isthat errors are stored per-connection and globally. This means that if multiple errors happen on a con-

33

Connections

nection without checking for the error, intermediate errors may be lost. For thisreason, it is strongly rec-
ommended to always check for and collect errors immediately after the libvirt API failed. Alternatively,
libvirt provides away to set acustom error handling function that will be called synchronously at thetime
the error occurred.

All of the error functions deal with getting or clearing avi r Er r or structure. Thevi r Er r or structure
looks like:

typedef struct _virError virError;
typedef virError *virErrorPtr;
struct _virError {
int code; /* The error code, a virErrorNunber */
int domain; /* What part of the library raised this error */
char *message; /* human-readabl e i nformative error nessage */
virErrorLevel |evel;/* how consequent is the error */
vi rConnect Ptr conn VI R DEPRECATED; /* connection if avail abl e, deprecated
see note above */
vi r Domai nPtr dom VI R_DEPRECATED; /* domain if avail able, deprecated
see note above */

char *strl; /* extra string information */
char *str2; /* extra string information */
char *str3; /* extra string information */

int intl;, /* extra nunber information */

int int2; /* extra nunber information */

vi rNetwor kPt r net VIR DEPRECATED; /* network if avail able, deprecated
see note above */

b

(Note that conn, dom, and net are deprecated members and should not be used in new code, since they
are not thread-safe)

Thefirst member of the structure, "code”, isthe error code that was returned from the error. Thisis one of
the members of thevi r Er r or Nunber enuminvi rt error. h; thefull list of errorsis:

typedef enum {
VIR ERR_ K = 0,
VIR ERR I NTERNAL ERRCR, /* internal error */
VI R_ERR NO MEMORY, /* menory allocation failure */
VI R_ERR NO SUPPCRT, /* no support for this function */
VI R_ ERR_UNKNOWN HOST, /* coul d not resol ve hostnane */
VI R_ERR _NO CONNECT, /* can't connect to hypervisor */
VI R_ERR I NVALI D CONN, /* invalid connection object */
VIR _ ERR I NVALI D DOVAI N,/ * invalid domain object */
VIR ERR I NVALID ARG /* invalid function argunment */
VI R_ERR OPERATI ON_FAI LED, /* a conmand to hypervi sor failed */
VIR ERR GET_FAILED,/* a HTTP GET conmmand to failed */
VI R_ERR _POST_FAILED,/* a HTTP POST conmand to failed */
VI R_ERR HTTP_ERROR, / * unexpected HTTP error code */
VI R_ ERR SEXPR SERI AL, /* failure to serialize an S Expr */
VI R_ ERR NO XEN, /* could not open Xen hypervi sor control */
VI R_ERR XEN CALL,/* failure doing an hypervisor call */
VIR ERR OS TYPE, /* unknown OS type */
VI R_ERR NO KERNEL, /* m ssing kernel information */
VI R_ERR NO ROOT, /* missing root device information */
VI R_ERR NO SOURCE, /* m ssing source device informtion */

34

Connections

VI R_ERR NO TARGET, /* missing target device informtion */

VI R_ERR NO NAME, /* missing domain nane information */

VIR ERR NO OGS, /* mssing domain OS information */

VIR_ERR NO DEVI CE, /* m ssing domain devices information */

VI R_ERR NO XENSTORE, /* could not open Xen Store control */

VIR ERR DRI VER FULL, /* too many drivers registered */

VIR ERR CALL_FAILED, /* not supported by the drivers (DEPRECATED) */

VIR ERR XML_ERROR, /* an XM description is not well formed or broken */

VI R_ERR DOM EXI ST,/ * the domain al ready exist */

VI R_ERR OPERATI ON_DENI ED, /* operation forbidden on read-only connections */

VIR ERR OPEN FAILED, /* failed to open a conf file */

VIR ERR READ FAILED, /* failed to read a conf file */

VI R_ERR PARSE FAILED, /* failed to parse a conf file */

VI R_ERR CONF_SYNTAX, /* failed to parse the syntax of a conf file */

VIR ERR WRITE FAILED, /* failed to wite a conf file */

VIR ERR XML_DETAIL, /* detail of an XM. error */

VI R_ERR I NVALI D NETWORK, /* invalid network object */

VI R_ERR NETWORK_EXI ST, /* the network al ready exist */

VI R_ERR SYSTEM ERROR, /* general systemcall failure */

VIR ERR RPC, /* sonme sort of RPC error */

VIR ERR GNUTLS ERRCR, /* error froma GNUILS call */

VIR WAR NO NETWORK, /* failed to start network */

VI R_ERR NO DOVAI N, /* domain not found or unexpectedly di sappeared */

VI R_ ERR_NO NETWORK, /* network not found */

VIR ERR I NVALID MAC, /* invalid MAC address */

VI R_ ERR AUTH FAILED, /* authentication failed */

VI R_ ERR | NVALI D STORAGE POOL, /* invalid storage pool object */

VI R_ ERR | NVALI D STORAGE VAL, /* invalid storage vol object */

VIR WAR_NO STORAGE, /* failed to start storage */

VI R_ERR _NO STORAGE POOL, /* storage pool not found */

VI R_ERR NO STORAGE VOL, /* storage pool not found */

VIR WAR_ NO NODE, /* failed to start node driver */

VI R_ERR | NVALI D NODE DEVICE,/* invalid node device object */

VI R_ERR_NO NODE DEVI CE, / * node device not found */

VI R_ERR NO SECURI TY_MODEL, /* security nodel not found */

VI R_ERR OPERATI ON_I NVALID, /* operation is not applicable at this tine */

VIR WAR NO I NTERFACE, /* failed to start interface driver */

VI R_ERR NO I NTERFACE, /* interface driver not running */

VI R_ ERR I NVALI D I NTERFACE, /* invalid interface object */

VI R_ERR MULTI PLE_| NTERFACES, /* nore than one matching interface found */

VIR WAR NO NWI LTER, /* failed to start nwfilter driver */

VIR ERR I NVALI D NWFI LTER, /* invalid nwilter object */

VIR_ERR NO NWFILTER, /* nw filter pool not found */

VIR _ ERR BU LD FI REWALL, /* nw filter pool not found */

VIR WAR_NO SECRET, /* failed to start secret storage */

VIR ERR I NVALI D_SECRET, /* invalid secret */

VI R_ ERR NO SECRET, /* secret not found */

VI R_ERR_CONFI G_UNSUPPORTED, /* unsupported configuration construct */

VI R_ERR OPERATI ON_TI MEQUT, /* tinmeout occurred during operation */

VI R_ERR M GRATE_PERSI ST_FAILED, /* a mgration worked, but making the
VM persist on the dest host failed */

VI R_ERR HOOK SCRI PT_FAI LED, /* a synchronous hook script failed */

VI R_ERR | NVALI D _DOVAI N_SNAPSHOT, /* invalid domain snapshot */

VI R_ERR _NO DOVAI N_SNAPSHOT, /* domai n snapshot not found */

35

Connections

} virErrorNunber;

The second member of the structure, "domain®, is named that for legacy reasons, but really represents
which part of libvirt generated the error. Thisis one of the members of thevi r Er r or Domai n enumin
virterror. h;thefull listis:

typedef enum {
VI R_FROM NONE = 0,
VIR FROM XEN, /* Error at Xen hypervisor |ayer */
VIR FROM XEND, /* Error at connection with xend daenon */
VI R_ FROM XENSTORE, /* Error at connection with xen store */
VI R_FROM SEXPR, /* Error in the S-Expression code */
VIR FROM XM., /* Error in the XM. code */
VIR_FROM DOM /* Error when operating on a domain */
VIR FROM RPC, /* Error in the XM.- RPC code */
VI R_FROM PROXY, /* Error in the proxy code */
VIR FROM CONF, /* Error in the configuration file handling */
VI R_FROM QEMU, /* Error at the QEMJ daenon */
VI R_FROM_NET, /* Error when operating on a network */
VIR FROM TEST, /* Error fromtest driver */
VI R_ FROM REMOTE, /* Error fromrenote driver */
VI R_FROM OPENVZ, [* Error from QpenVZ driver */
VIR FROM XENXM /* Error at Xen XM | ayer */
VI R_FROM STATS LINUX,/* Error in the Linux Stats code */
VI R_FROM LXC, /* Error from Linux Container driver */
VI R_FROM STORAGCE, [* Error from storage driver */
VI R_FROM NETWORK, [* Error fromnetwork config */
VI R_FROM DOVAI N, [* Error fromdomain config */
VI R_FROM UM, /* Error at the UML driver */
VI R_FROM NODEDEYV, /* Error from node device nonitor */
VI R_FROM XEN I NOTI FY,/* Error fromxen inotify layer */
VIR FROM SECURITY, /[/* Error from security framework */

VI R_FROM VBOX, /* Error from Virtual Box driver */

VI R_FROM | NTERFACE, /* Error when operating on an interface */
VI R_FROM _ONE, [* Error from OpenNebul a driver */

VI R_FROM ESX, /* Error fromESX driver */

VI R_FROM_PHYP, /* Error from|BM power hypervisor */

VI R_FROM SECRET, /[* Error fromsecret storage */

VI R_FROM CPU, /* Error fromCPU driver */

VI R_FROM XENAPI , /* Error from XenAPl */

VIR FROM NWI LTER, /* Error fromnetwork filter driver */

VI R_FROM HOCK, /* Error from Synchronous hooks */

VI R_FROM DOVAI N_SNAPSHOT, /* Error from domai n snapshot */
} virErrorDomain;

The third member of the structure, "message”, is a human-readable string describing the error.

The fourth member of the structure, "level”, describes the severity of the error. Thisis one of the members
of the virErrorLevel enum in virterror.h; the full list of levelsis:

typedef enum {
VI R_ERR_NONE = 0,
VIR ERR WARNING = 1, /* A sinple warning */
VIR ERR ERROR = 2 /* An error */

} virErrorlLevel;

36

Connections

The fifth member of the structure, "conn", is deprecated because it is not thread-safe.
The sixth member of the structure, "dom", is deprecated because it is not thread-safe.
The seventh member of the structure, "strl", gives extra human readable information.
The eighth member of the structure, "str2", gives extra human readabl e information.
The ninth member of the structure, "str3", gives extra human readable information.

The tenth member of the structure, "int1", gives extra numeric information that may be useful for further
classifying the error.

The eleventh member of the structure, "int2", gives extra numeric information that may be useful for
further classifying the error.

The twelfth member of the structure, "net", is deprecated because it is not thread-safe.

Example code that uses various parts of this structure will be presented in API call sub-sections.

virSetErrorFunc

By default when an error occurs, libvirt will call thevi r Def aul t Er r or Func function which will print
the error information to stderr. Thevi r Set Er r or Func API call can be used to set acustom global error
function that libvirt will call instead. It takes a void * pointer for userData and a virErrorFunc function
pointer as input, and returns nothing. The custom error function should have a function signature of:

typedef void (*virErrorFunc) (void *userData, virErrorPtr error);
The following code demonstrates the use of vi r Set Er r or Func:

/* exanple ex21l.c */

/* compile with: gcc -g -Vall ex21l.c -0 ex21 -lvirt */
#i ncl ude <stdio. h>

#include <stdlib. h>

#include <libvirt/libvirt.h>

#include <libvirt/virterror. h>

static void custonkErrorFunc(void *userdata, virErrorPtr err)

{

fprintf(stderr, "Failure of libvirt library call:\n");
fprintf(stderr, " Code: %l\n", err->code);

fprintf(stderr, " Donmain: %l\n", err->domain);
fprintf(stderr, " Message: %\n", err->nessage);
fprintf(stderr, " Level: %\n", err->level);
fprintf(stderr, " strl: 9%\n", err->strl);
fprintf(stderr, " str2: 9%\n", err->str2);
fprintf(stderr, " str3:. %\n", err->str3);
fprintf(stderr, " intl: %\n", err->intl);
fprintf(stderr, " int2: %\n", err->int2);

}

int main(int argc, char *argv[])

{

vi rConnect Ptr conn;

37

Connections

vi r Set Err or Func(NULL, cust onError Func);

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

i f (virConnect Get Version(conn, NULL) < 0)
fprintf(stderr, "virConnectGetVersion failed\n");

vi r Connect Cl ose(conn);
return O;

}
virConnSetErrorFunc

Thevi r ConnSet Er r or Func API call can be used to set a per-connection custom error handling func-
tion. If present, this per-connection error handling function will take precendence over the global error
handling function. Theinternal libvirt logic for deciding which error handling function to call is (in pseu-
do-code):

i f (conn->handl er)
conn->handl er;

el se if (global handler)
gl obal _handl er;

el se
vi r Def aul t Er r or Func;

vi r ConnSet Er r or Func takesavirConnectPtr, avoid * pointer for userData, and avirErrorFunc func-
tion pointer as input, and returns nothing. As with vi r Set Er r or Func, the custom connection error
function should have a function signature of:

typedef void (*virErrorFunc) (void *userData, virErrorPtr error);
The following code demonstrates the use of vi r ConnSet Er r or Func:

/* exanpl e ex22.c */

/[* conpile with: gcc -g -Vall ex22.c -0 ex22 -lvirt */
#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

#include <libvirt/virterror.h>

static void custonConnErrorFunc(void *userdata, virErrorPtr err)

{

fprintf(stderr, "Connection handler, failure of libvirt library call:\n");
fprintf(stderr, " Code: %\n", err->code);

fprintf(stderr, " Domain: %\n", err->donain);
fprintf(stderr, " Message: %\n", err->message);
fprintf(stderr, " Level: %\ n", err->|evel);
fprintf(stderr, " strl: 9%\n", err->strl);
fprintf(stderr, " str2: 9%\n", err->str2);

38

Connections

fprintf(stderr, " str3: 9%\n", err->str3);
fprintf(stderr, " intl: %\n", err->intl);
fprintf(stderr, " int2: %\n", err->int2);

}

static void custond obal Error Func(voi d *userdata, virErrorPtr err)

{

fprintf(stderr, "d obal handler, failure of libvirt library call:\n");
fprintf(stderr, " Code: %\n", err->code);

fprintf(stderr, " Domain: %\n", err->donain);
fprintf(stderr, " Message: %\n", err->message);
fprintf(stderr, " Level: %l\n", err->|level);
fprintf(stderr, " strl: 9%\n", err->strl);
fprintf(stderr, " str2: 9%\n", err->str2);
fprintf(stderr, " str3: 9%\n", err->str3);
fprintf(stderr, " intl: %\n", err->intl);
fprintf(stderr, " int2: %\n", err->int2);

}

int main(int argc, char *argv[])

{

vi rConnect Ptr connl
vi rConnect Ptr conn2;

/* set a global error function for all connections */
vi r Set Err or Func(NULL, cust ond obal Error Func);

connl = virConnect Qpen("qgemu:///system');

if (connl == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

conn2 = virConnect Qpen("qgemu:///system');

if (conn2 == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
vi r Connect Ol ose(connl);
return 2;

}

/* connl will use a different error function */
vi r ConnSet Er r or Func(connl, NULL, customConnErrorFunc);

/* this failure will use custonConnErrorFunc */
i f (virConnect Get Version(connl, NULL) < 0)
fprintf(stderr, "virConnectGetVersion failed\n");

[* this failure will use custond obal Error Func */
i f (virConnect Get Version(conn2, NULL) < 0)
fprintf(stderr, "virConnectGetVersion failed\n");

vi r Connect O ose(conn2);
vi r Connect O ose(connl);
return O;

39

Connections

}
virCopyLastError

Thevi r CopyLast Err or API call can be used to obtain a copy of the last error reported from libvirt.
Theerror object iskept in thread local storage so separate threads can safely use thisfunction concurrently.
It takes a virErrorPtr as input, and if successful makes a deep copy of the error. If there were no errors
pending, O isreturned. If there was an error pending, the error code is returned. If an error occurred, -1 is
returned. The following code demonstrates the use of vi r CopyLast Error:

/* exanple ex23.c */

/* conpile with: gcc -g -Vall ex23.c -0 ex23 -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt.h>

#include <libvirt/virterror.h>

/* dumry error function to suppress virDefaultErrorFunc */
static void custonErrorFunc(void *userdata, virErrorPtr err)
{

}

int main(int argc, char *argv[])
{

vi r Connect Ptr conn;

virError err;

vi r Set Error Func(NULL, custonError Func);

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

i f (virConnect GetVersion(conn, NULL) < 0) {
vi r CopyLast Error(&err);
fprintf(stderr, "virConnectGetVersion failed: %\n", err.nessage);
virResetError(&err);

}

vi r Connect Cl ose(conn);
return O;

}
virGetLastError

Thevi r Get Last Er r or API call can be used to obtain a pointer to the last error reported from libvirt.
The error object iskept in thread local storage so separate threads can safely use this function concurrent-
ly. Note that it does not take a copy, so error information can be lost if the current thread obtains this
pointer, calls ancther libvirt function, and then tries to access this pointer. If that behavior is desired, use
vi r CopyLast Error orvir SavelLast Err or instead. It takes no input, and returns a pointer to the
last error object if one exists. If there was no last error, or the last error was VIR_ERR_OK, NULL is
returned instead. The following code demonstrates the use of vi r Get Last Err or :

40

Connections

/* exanple ex24.c */

/[* conpile with: gcc -g -Vall ex24.c -0 ex24 -lvirt */
#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

#include <libvirt/virterror.h>

static void custonErrorFunc(void *userdata, virErrorPtr err)

{
}
int main(int argc, char *argv[])
{
vi rConnect Ptr conn;
vVirErrorPtr err;
vi r Set Err or Func(NULL, cust onEr ror Func);
conn = virConnect Open("qgenu:///systent);
if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,
}
i f (virConnect Get Version(conn, NULL) < 0) {
/* this is a valid way to use virGCetLastError */
err = virGetLastError();
fprintf(stderr, "virConnectGetVersion failed: %\n", err->nessage);
}
i f (virConnect Get Version(conn, NULL) < 0) {
/* this is an invalid way to use virGetLastError; the error nessage wll
* not represent the error from virConnect Get Version
*/
err = virGetLastError();
vi r NodeCGet Fr eeMenor y(NULL) ;
fprintf(stderr, "virConnectGetVersion failed: %\n", err->nessage);
}
vi r Connect Cl ose(conn);
return O;
}

virSavelLastError

Thevi r SavelLast Err or API cal can be used to allocate and obtain a copy of the last error reported
fromlibvirt. The error object is kept in thread local storage so separate threads can safely use thisfunction
concurrently. It takes nothing asinput and if successful returns a newly alocated virError object. It isthe
responsibility of the caller to freethe error with vi r Fr eeEr r or . If an error occurred, NULL is returned
instead. The following code demonstrates the use of vi r SavelLast Err or :

/* exanpl e ex25.c */
[* conpile with: gcc -g -Wall ex25.c -0 ex25 -lvirt */
#i ncl ude <stdio. h>

41

Connections

#i ncl ude <stdlib. h>
#include <libvirt/libvirt.h>
#include <libvirt/virterror. h>

/* dumry error function to suppress virDefaultErrorFunc */
static void custonErrorFunc(void *userdata, virErrorPtr err)

{
}
int main(int argc, char *argv[])
{
vi rConnect Ptr conn;
vVirErrorPtr err;
vi r Set Err or Func(NULL, cust onEr ror Func);
conn = virConnect Open("qgenu:///systent);
if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,
}
i f (virConnect Get Version(conn, NULL) < 0) {
err = virSavelLastError();
fprintf(stderr, "virConnectGetVersion failed: %\n", err->nessage);
virFreeError(err);
}
vi r Connect Cl ose(conn);
return O;
}

virResetError

Thevi r Reset Err or API call can be used to clear and free any memory associated with an virError
object (though it does not free the object itself). It is typically used after a program is finished using an
virError object obtained through vi r CopyLast Er r or , though it can also be used after avi r Save-
Last Er r or inspecial circumstances. It takesthe virErrorPtr asinput, and returns nothing. Thefollowing
code demonstrates the use of vi r Reset Err or :

/* exanpl e ex26.c */

/[* conpile with: gcc -g -Wall ex26.c -0 ex26 -lvirt */
#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

#include <libvirt/virterror.h>

/* dumry error function to suppress virDefaultErrorFunc */
static void custonErrorFunc(void *userdata, virErrorPtr err)

{
}

int main(int argc, char *argv[])

{

42

Connections

vi rConnect Ptr conn;
virError err;

vi r Set Err or Func(NULL, cust onError Func);

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

i f (virConnect Get Version(conn, NULL) < 0) {
vi r CopyLast Error (&err);
fprintf(stderr, "virConnectGetVersion failed: %\n", err.message);
virResetError(&err);

}

vi r Connect Cl ose(conn);
return O;

}
virFreeError

The vi r FreeError API call can be used to clear and free any memory associated with an virError
object, including the object itself. It istypically used after a program is finished using an virError object
obtained through vi r SavelLast Er r or , though it can also be used after avi r CopyLast Err or in
special circumstances. It takes the virErrorPtr as input, and returns nothing. The following code demon-
stratestheuse of vi r FreeError:

/* exanpl e ex27.c */

[* conpile with: gcc -g -Vall ex27.c -0 ex27 -lvirt */
#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#include <libvirt/libvirt. h>

#include <libvirt/virterror.h>

/* dumry error function to suppress virDefaultErrorFunc */
static void custonErrorFunc(void *userdata, virErrorPtr err)
{

}

int main(int argc, char *argv[])
{
vi rConnect Ptr conn;
virErrorPtr err;

vi r Set Err or Func(NULL, cust onEr ror Func);

conn = virConnect Open("qgenu:///systent);

if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

43

Connections

i f (virConnect Get Version(conn, NULL) < 0) {
err = virSavelLastError();
fprintf(stderr, "virConnectGetVersion failed: %\n", err->nessage);
virFreeError(err);

}

vi r Connect Cl ose(conn);
return O;

}
virConnResetError

Thevi r ConnReset Er r or API call can be used to clear and free any memory associated with an vir-
Error object on a particular connection (though it does not free the object itself). It is typically used af-
ter aprogram is finished using an virError object obtained through vi r ConnCopyLast Er r or , though
it can also be used after avi r ConnSavelast Error in specia circumstances. However, both vi r -
ConnCopylLast Error andvi r ConnSavelast Er r or aredeprecated, and sincelibvirt 0.6.0 all per-
connection errors are also propagated to the global error storage. Therefore, this API should not be used in
new code; vi r Reset Er r or should be used instead. The function remains for backwards compatibility.

virConnCopyLastError

Thevi r ConnCopylLast Error API call can be used to obtain a copy of the last error reported from
libvirt on a particular connection. This function has been deprecated because it is not thread-safe, and
since libvirt 0.6.0 al connection errors are also propagated to the global error object. New code should
usevi r CopyLast Err or instead. This function remains for backwards compatilibity.

virConnGetLastError

Thevi r ConnGet Last Er r or API call can be used to obtain a pointer to the last error reported from
libvirt on a particular connection. This function has been deprecated because it is not thread-safe, and
since libvirt 0.6.0 al connection errors are also propagated to the global error object. New code should
usevi r Get Last Er r or instead. Thisfunction remains for backwards compatilibity.

Debugging / logging

Libvirt includes logging facilities to facilitate the tracing of library execution. These logs will frequently
be requested when trying to obtain support for libvirt, so familiarity with them is essential.

Thelogging facilitiesin libvirt are based on 3 key concepts:

1. Log messages - generated at runtime by the libvirt code, they include a timestamp, a priority level
(DEBUG =1, INFO = 2, WARNING = 3, ERROR = 4), a category, function name and line number
indicating where the message originated from, and a formatted message.

2. Logfilters- patterns and priorities which control whether or not a particular message is displayed. The
format for afilter is:

X nane

where "x" isthe minimal priority level where the match should apply, and "name" is a string to match
against. The priority levels are:

Connections

1 (or debug) - log all messages

* 2(orinfo) - log all non-debugging information

e 3(or warn) - log only warnings and errors - thisis the default

* 4 (or error) - log only errors

For instance, to log all debug messages to the gemu driver, the following filter can be used:
1: genu

Multiple filters can be specified together by space separating them; the following example logs all
debug messages from gemu, and logs all error messages from the remote driver:

1:genmu 4:renote

. Log outputs - where to send the message once it has passed through filters. The format for alog output

is one of the forms:

x:stderr - log to stderr

x:syslog: name - log to syslog with a prefix of "nane"
x:file:file_path - log to a file specified by "file_path"

where "x" is the minimal priority level. For instance, to log al warnings and errors to syslog with a
prefix of "libvirtd", the following output can be used:

3:syslog:libvirtd

Multiple outputs can be specified by space separating them; the following example logs all error and
warning messages to syslog, and logs al debug, information, warning, and error messagesto / t np/
libvirt.log:

3:syslog:libvirtd 1:file:/tnp/libvirt.|og

Environment Variables

The desired log priority level, filters, and outputs are specified to the libvirt library through the use of
environment variables:

1.

2.

3.

LI BVI RT_DEBUG specifies the minimum priority level messages that will be logged. This can be
thought of as a "global" priority level; if a particular log message does not match a specific filter in
LI BVI RT_LOG FI LTERS, it will be compared to this global priority and logged as appropriate.

LI BVI RT_LOG_FI LTERS specifiesthefiltersto apply.

LI BVI RT_LOG_QUTPUTS specifies the outputs to send the message to.

Example 3.22. Running virsh with environment variables

To see more detailed information about what is going on with virsh, we may run it like the following:

LI BVI RT_DEBUG=error LIBVIRT_LOG FILTERS="1:renote" virsh |ist

This example will only print error messages from virsh, except that the remote driver will print all debug,
information, warning, and error messages.

45

Connections

Integrated example

This example demonstrates many of the concepts from the chapter together, including error checking.
While still not a"real" program (which would likely be multi-threaded), it's a good example of how to
write alibvirt program from end to end.

/* exanple ex28.c */

/[* conpile with: gcc -g -Wall ex28.c -0 ex28 -lvirt */

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>
#include <libvirt/li
#include <libvirt/vi

bvirt. h>
rterror. h>

static void custonConnErrorFunc(void *userdata, virErrorPtr err)

{
fprintf(stderr,

fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,

}

static void custond

{
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,
fprintf(stderr,

"Connection handler, failure of libvirt library call:\n");
" Code: %\ n", err->code);

" Domain: %l\n", err->domain);

" Message: %\n", err->nessage);

" Level: %d\n", err->level);

" strl: %\n", err->strl);

"ostr2: %\n", err->str2);

" str3: %\n", err->str3);

"intl: %\n", err->intl);

"int2: %\n", err->int2);

obal Error Func(void *userdata, virErrorPtr err)

"d obal handler, failure of libvirt library call:\n");
" Code: %\ n", err->code);

" Domain: %l\n", err->domain);

" Message: %\n", err->nessage);

" Level: %d\n", err->level);

" strl: %\n", err->strl);

"ostr2: %\n", err->str2);

" str3: %\n", err->str3);

"intl: %\n", err->intl);

"int2: %\n", err->int2);

int main(int argc, char *argv[])

vi rConnect Ptr connl
vi rConnect Ptr conn2;
vi rConnect Ptr conng3;
vi rConnect Ptr conn4;

char *caps;
virError err;
char *host name;

virErrorPtr err2

i nt vcpus;

unsi gned | ong | ong node_free_nenory;

46

Connections

vi r Nodel nf o nodei nf o;

unsi gned long | ong *node_cel |l s_freemem
i nt numodes;

int i;

const char *type;

unsi gned | ong virtVersion
unsi gned long |ibvirtVersion
char *uri;

int is_encrypted;

int is_secure;

vi rSecurityMdel secnodel;

/* set a global error function for all connections */
vi r Set Err or Func(NULL, cust ond obal Error Func) ;

/* open a connection using the old-style virConnect Qpen */

connl = virConnect Qpen("qgemu:///system');

if (connl == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
return 1,

}

/* open a read-only connection using the old-style virConnect QpenReadOnly */
conn2 = virConnect OQpenReadOnl y("qgemu:///system');
if (conn2 == NULL) {

fprintf(stderr, "Failed to open connection to genu:///systemn");

vi r Connect Gl ose(connl);

return 2;

}

/* open a connection using the newstyle virConnect CpenAuth */
conn3 = virConnect QpenAut h("qgenu:///systent, virConnect AuthPtrDefault, O0);
if (conn3 == NULL) {

fprintf(stderr, "Failed to open connection to genu:///systemn");

vi r Connect G ose(conn2);

vi r Connect Gl ose(connl);

return 3;

}

/* open a read-only connection using the new style virConnect QpenAuth */
conn4 = virConnect QpenAut h("qgenu:///systent, virConnect Aut hPtrDefault,
VI R_CONNECT_RO) ;

if (connd == NULL) {

fprintf(stderr, "Failed to open connection to genu:///systemn");

vi r Connect O ose(conn3);

vi r Connect O ose(conn2);

vi r Connect O ose(connl);

return 3;

}

/* connl will use a different error function */
vi r ConnSet Er r or Func(connl, NULL, customConnErrorFunc);

/* test out error handling */

47

Connections

/* this failure will use custonConnErrorFunc */

i f (virConnect Get Version(connl, NULL) < 0)
fprintf(stderr, "virConnectGetVersion failed\n");

/[* this failure will use custond obal Error Func */

i f (virConnect Get Version(conn2, NULL) < 0)
fprintf(stderr, "virConnectGetVersion failed\n");

/* clear out the per-connection error function; we will report errors with
* the vir*Error() functions bel ow/
vi r ConnSet Er r or Func(connl, NULL, NULL);

/* clear out the global error function; we will report errors with
* the vir*Error() functions bel ow/
vi r Set Err or Func(NULL, NULL);

/* get the capabilities of connl */

caps = virConnect Get Capabilities(connl);

if (caps == NULL) {
vi r CopyLast Error (&err);
fprintf(stderr, "virConnectGetCapabilities failed: %\n", err.message);
virResetError(&err);

}

fprintf(stdout, "Capabilities of connection 1:\n%\n", caps);

free(caps);

/* get the hostname reported fromconn2 */

host name = vir Connect Get Host nanme(conn2) ;

if (hostnane == NULL) {
err2 = virSavelLastError();
fprintf(stderr, "virConnectGetVersion failed: %\n", err2->nessage);
virFreeError(err2);

}

fprintf(stdout, "Connection 2 hostnanme: %\n", hostnane);

free(host nane) ;

/* get the maxi mum nunber of vcpus supported by conn3 */

vcpus = virConnect Get MaxVcpus(conn3, NULL);

if (vcpus < 0) {
err2 = virSavelLastError();
fprintf(stderr, "virConnect Get MaxVcpus failed: %\n", err2->nmessage);
virFreeError(err2);

}

fprintf(stdout, "Maximum nunber of cpus supported on connection 3: %l\n",

vcpus) ;

/* get the anmount of free nenory avail able on the node from connd4 */
node_free_nenory = virNodeGet FreeMenory(conn4);
if (node_free_nmemory == 0) {
err2 = virSavelLastError();
fprintf(stderr, "virNodeGetFreeMenory failed: %\n", err2->nessage);
virFreeError(err2);

}

/* get the node information fromconnl */

48

Connections

i f (virNodeGetlnfo(connl, &nodeinfo) < 0) {
err2 = virSavelLastError();
fprintf(stderr, "virNodeGetInfo failed: %\n", err2->nessage);
virFreeError(err2);

}

fprintf(stdout, "Node information fromconnection 1:\n");

fprintf(stdout, " Model: %\n", nodei nfo.nodel);

fprintf(stdout, " Menmory size: % ukb\n", nodeinfo. nenory);

fprintf(stdout, " Number of CPUs: %\ n", nodeinfo.cpus);

fprintf(stdout, " MHz of CPUs: %u\n", nodeinfo.mz);

fprintf(stdout, " Number of NUMA nodes: %u\n", nodei nfo.nodes);
fprintf(stdout, " Number of CPU sockets: %\n", nodeinfo.sockets);
fprintf(stdout, " Number of CPU cores per socket: %\ n", nodeinfo.cores);
fprintf(stdout, " Number of CPU threads per core: %\n", nodeinfo.threads);

/* get the anmount of nenory in each of the NUMA nodes from connection 1 */
/* we al ready know t he nunmber of nodes from virNodeGetl nfo above */
node_cel I s_freenem = mal | oc(nodei nfo. nodes * si zeof (unsigned |long long));
numodes = virNodeGet Cel | sFreeMenory(connl, node_cells_freenem O,
nodei nf 0. nodes) ;

if (numodes < 0) {

err2 = virSavelLastError();

fprintf(stderr, "virNodeGetCellsFreeMenory failed: %\n",

err2->message) ;
virFreeError(err2);

}
fprintf(stdout, "Node Cells Free Menory from connection 1:\n");
for (i = 0; i < numodes; i ++)

fprintf(stdout, " Cell %l: %I ukb free memory\n", i,
node _cells_freenenii]);
free(node_cells_freemenj;

/* get the virtualization type fromconn2 */

type = virConnect Get Type(conn2);

if (type == NULL) {
err2 = virSavelLastError();
fprintf(stderr, "virConnectGetType failed: %\n", err2->nessage);
virFreeError(err2);

}

fprintf(stdout, "Virtualization type fromconnection 2: %\n", type);

/* get the virtualization version fromconn3 */
i f (virConnect Get Version(conn3, &virtVersion) < 0) {
err2 = virSavelLastError();
fprintf(stderr, "virConnectGetVersion failed: %\n", err2->nessage);
virFreeError(err2);
}
fprintf(stdout, "Virtualization version fromconnection 3: % u\n",
vi rt Version);

/* get the libvirt version fromconnd4 */
i f (virConnect GetLibVersion(conn4, & ibvirtVersion) < 0) {
err2 = virSavelLastError();
fprintf(stderr, "virConnectGetLibVersion failed: %\n", err2->message);

49

Connections

virFreeError(err2);

}

fprintf(stdout, "Libvirt version fromconnection 4: %u\n", |ibvirtVersion);

/* get the URI from connl */
uri = virConnect Get URI (connl);
if (uri == NULL) {
err2 = virSavelLastError();
fprintf(stderr, "virConnectGetURl failed: %\n", err2->nessage);
virFreeError(err2);
}
fprintf(stdout, "Canonical URI from connection 1. %\n", uri);
free(uri);

/* is the connection encrypted? fromconn2 */
i s_encrypted = virConnectlsEncrypted(conn2);
if (is_encrypted < 0) {
err2 = virSavelLastError();
fprintf(stderr, "virConnectlsEncrypted failed: %\n", err2->nessage);
virFreeError(err2);
}
fprintf(stdout, "Connection 2 % encrypted\n”,
(is_encrypted == 0) ? "is not" : "is");

/* is the connection secure? fromconn3 */
i s_secure = virConnectlsSecure(conn3);
if (is_secure < 0) {
err2 = virSavelLastError();
fprintf(stderr, "virConnectlsSecure failed: %\n", err2->message);
virFreeError(err2);
}
fprintf(stdout, "Connection 3 % secure\n",
(is_secure == 0) ? "is not" : "is");

/* get the security nodel from conn4 */
i f (virNodeGet SecurityMdel (conn4, &secnodel) < 0) {
err2 = virSavelLastError();

fprintf(stderr, "virNodeGetSecurityMdel failed: %\n", err2->message);

virFreeError(err2);
}
fprintf(stdout, "Connection 4 Security Mdel = %, DA = %\n"
secnodel . nodel , secnodel . doi);

vi r Connect G ose(conn4);
vi r Connect O ose(conn3);
vi r Connect O ose(conn2);
vi r Connect O ose(connl);
return O;

50

Chapter 4. Guest Domains

Domain overview

A domainisaninstance of an operating system running on avirtualized machine. A guest domain can refer
to either arunning virtual machine or a configuration which can be used to launch a virtual machine. The
connection object provides APIs to enumerate the guest domains, create new guest domains and manage
existing domains. A guest domain is represented with the vi r Domai nPt r object and has a number of
unique identifiers:

Uniqueidentifiers

* |D: positive integer, unique amongst running guest domains on a single host. An inactive domain does
not have an ID. If the host OSisavirtual domain, it isgiven alD of zero by default. For example, with
the Xen hypervisor, DonD indicates a guest domain. Other domain IDs will be allocated starting at 1,
and incrementing each time a new domain starts. Typically domain IDs will not be re-used until the
entire 1D spacewrapsaround. Thedomain ID spaceisat least 16 bitsin size, but often extendsto 32 bits.

» name: short string, unique amongst all guest domains on a single host, both running and inactive. For
maximum portability between hypervisors applications should only rely on being able to use the char-
actersa- Z, 0- 9, -, _ in names. Many hypervisors will store inactive domain configurations as files
on disk, based on the domain name.

» UUID: 16 unsigned bytes, guaranteed to be unique amongst all guest domains on any host. RFC 4122
defines the format for UUIDs and provides arecommended algorithm for generating UUIDs with guar-
anteed uniqueness. If the host OSisitself avirtual domain, then by convention it will be given aUUID
of al zeros. Thisisthe case with the Xen hypervisor, where DonD isaguest domain itself.

A guest domain may be transient, or persistent. A transient guest domain can only be managed whileit is
running on the host and, when powered off, all traces of it will disappear. A persistent guest domain has
its configuration maintained in a data store on the host by the hypervisor, in an implementation defined
format. Thus when a persistent guest is powered off, it is still possible to manage its inactive config. A
transient guest can be turned into a persistent guest on the fly by defining a configuration for it.

Once an application has a unique identifier for a domain, it will often want to obtain the corresponding
vi r Domai nPt r object. There are three, imaginatively named, methods to do lookup existing domains,
vi r Domai nLookupBy| D, vi r Domai nLookupByNane and vi r Domai nLookupByUUI D. Each
of these takes a connection object as first parameter, and the domain identifier as the other. They will
return NULL if no matching domain exists. The connection's error object can be queried to find specific
details of the error if required.

Example 4.1. Fetching a domain object from an 1D

int dommi nl D = 6;
vi r Domai nPtr dom

dom = vi r Domai nLookupByl D(conn, donmi nl D) ;

Example 4.2. Fetching a domain object from an name

char *domai nName = "soneguest"”;
vi r Domai nPtr dom

51

Guest Domains

dom = vi r Domai nLookupByNane(conn, donmai nNane) ;

Example 4.3. Fetching a domain object from an UUID

char *domai nUUI D = "00311636-7767-71d2- e94a- 26e7b8bad250";
vi r Domai nPtr dom

dom = vi r Dormai nLookupByUUI DSt ri ng(conn, domai nUUI D) ;

For convenience of this document, the UUID example used the printable format of UUID. There is an
equivalent method which accepts the raw bytesunsi gned char[]

Listing domains

Thelibvirt API exposestwo lists of domains, thefirst contains running domains, while the second contains
inactive, persistent domains. The lists are intended to be non-overlapping, exclusive sets, though thereis
always a small possibility that a domain can stop or start in between the querying of each set. The events
API described later in this section provides a way to track all lifecycle changes avoiding this potential
race condition.

The API for listing active domains, returns a list of domain IDs. Every running domain has a positive
integer 1D, uniquely identifying it amongst all running domains on the host. The API for listing active
domains, vi r Connect Li st Donmi ns, requires the caller to passin a pre-allocated i nt array which
will befilled in domain IDs. The return value will be -1 upon error, or the total number of array elements
filled. To determine how large to make the ID array, the application can usethe API call vi r Connect -
Nunf Domai ns. Putting these two callstogether, afragment of code which printsalist running domain
IDswould be

Example 4.4. Listing active domains

int i;
i nt nunmDomai ns;
int *acti veDonmi ns;

nunmDomai ns = vi r Connect NunOf Dorrai ns(conn) ;

activeDomai ns = mal |l oc(sizeof (int) * nunmDomai ns);
nunDomai ns = vir Connect Li st Domai ns(conn, activeDonai ns, nunmDomai ns) ;

printf("Active domain |IDs:\n");

for (i =0 ; i < nunmDomains ; i++) {
printf(" %l\n", activeDomains[i]);

}

free(activeDomai ns);

In addition to the running domains, there may be some persistent inactive domain configurations stored
on the host. Since an inactive domain does not have any ID identifier, the listing of inactive domains is
exposed asalist of name strings. In asimilar styleto the API just discussed, thevi r Connect Li st De-

fi nedDomai ns API requires the caller to provide a pre-allocated char * array which will be filled
with domain name strings. The return value will be -1 upon error, or the total number of array elements
filled with names. It isthe caller's responsibility to free the memory associated with each returned name.
As you might expect, there is also avi r Connect NuntX Def i nedDomai ns APl to determine how

52

Guest Domains

many names are known. Putting these calls together, a fragment of code which prints a list of inactive
persistent domain names would be:

Example 4.5. Listing inactive domains

int i;
i nt nunDonmmi ns;
char **inacti veDomai ns;

nunDonai ns = vi r Connect NumOf Def i nedDomai ns(conn);

i nacti veDonai ns = nal |l oc(si zeof (char *) * nunDonai ns);
nunDonai ns = vi r Connect Li st Defi nedDonai ns(conn, inactiveDomai ns, nunmDonai ns);

printf("lnactive donmain nanes:\n");

for (i =0 ; i < nunDomains ; i++) {
printf(" 9%\n", inactiveDonains[i]);
free(inactiveDonains[i]);

}

free(inactiveDonai ns);

The APIs for listing domains do not directly return the full vi r Domai nPt r objects, since this may
incur undue performance penalty for applications which wish to query the list of domains on a frequent
basis. Given adomain ID or name, obtaining afull vi r Domai nPt r object is a straightforward matter
of calling one of the vi r Domai nLookupBy{ Nane, | D} methods. So an example which obtained a
vi r Domai nPt r object for every domain, both active and inactive, would be:

Example 4.6. Fetching all domain objects

vi r Domai nPtr *al | Donmai ns;

i nt nunDomai ns = O;

i nt numActi veDomai ns, nunl nacti veDomai ns;
char **inacti veDonai ns;

int *activeDonai ns;

int i;

numAct i veDomai ns = vi r Connect Nun®f Domai ns(conn) ;
num nacti veDomai ns = vi r Connect NumOf Def i nedDomai ns(conn);

al | Domai ns = mal | oc(si zeof (vi rDomai nPtr) *

(numAct i veDomai ns + num nacti veDomai ns)) ;
i nacti veDomai ns = mal | oc(si zeof (char *) * num nacti veDomai ns);
activeDomai ns = mal |l oc(sizeof (int) * numActi veDomai ns);

numAct i veDomai ns = vir Connect Li st Dormai ns(conn,
acti veDomai ns,
numAct i veDomai ns) ;
num nacti veDomai ns = vir Connect Li st Defi nedDomai ns(conn,
i nact i veDomai ns,
num nact i veDomai ns) ;

for (i =0 ; i < numActiveDomains ; i++) {

53

Guest Domains

al | Domai ns[numDorai ns] = vi r Domai nLookupByl D(conn, activeDomains[i]);
nunDomai Ns++;

}

for (i =0 ; i < numnactiveDomains ; i++) {
al | Domai ns[numDorai ns] = vi r Domai nLookupByNanme(conn, inactiveDomains[i]);
free(inactiveDomains[i]);
nunDomai Ns++;

}

free(acti veDonai ns);
free(inactiveDomai ns);

Lifecycle control

libvirt can control the entirelifecycle of guest domains. Guest domains can transition through several states
throughout their lifecycle:

1. Undefi ned. Thisisthe baseline state. An undefined guest domain has not been defined or created
inany way.

2. Def i ned. A defined guest domain has been defined but is not running. This state could also be de-
scribed as St opped.

3. Runni ng. A running guest domain is defined and being executed on a hypervisor.

4. Paused. A paused guest domain is in a suspended state from the Runni ng state. Its memory image
has been temporarily stored, and it can be resumed to the Runni ng state without the guest domain
operating system being aware it was ever suspended.

5. Saved. A saved domain hashad itsmemory image, as captured inthe Paus ed state, saved to persistent
storage. It can be restored to the Runni ng state without the guest domain operating system being
aware it was ever suspended.

The transitions between these states fall into several categories: the section called “Provisioning and start-
ing”, the section called “ Suspend / Resume and Save / Restore”, the section called “Migration” and the
section called “ Autostart”.

Figure4.1. Guest domain lifecycle

Provisioning and starting

Provisioning refers to the task of creating new guest domains, typically using some form of operating
system installation media. There are awide variety of ways in which a guest can be provisioned, but the
choices available will vary according to the hypervisor and type of guest domain being provisioned. It
is not uncommon for an application to support severa different provisioning methods. Starting refers to
executing a provisioned guest domain on a hypervisor.

APIs for provisioning

Thereare up to three APIsinvolved in provisioning guests. Thevi r Donai nCr eat e XML command will
create and immediately boot a new transient guest domain. When this guest domain shuts down, all trace
of it will disappear. Thevi r Dormai nDef i ne XML command will store the configuration for a persistent
guest domain. Thevi r Donmai nCr eat e command will boot a previously defined guest domain from its

54

Guest Domains

Booting

persistent configuration. One important thing to note, isthat thevi r Donai nDef i ne XML command can
be used to turn a previously booted transient guest domain, into a persistent domain. This can be useful
for some provisioning scenarios that will beillustrated |ater.

a transient guest domain

To boot atransient guest domain, simply requires a connection to libvirt and a string containing the XML
document describing the required guest configuration. The following example assumes that conn is an
instance of thevi r Connect Pt r object.

vi r Domai nPtr dom
const char *xm config = "<domain>........ </ domai n>";

dom = vi r Connect Creat eXM_(conn, xm config, O0);

if ('dom {
fprintf(stderr, "Domain creation failed");
return;

}

fprintf(stderr, "Guest % has booted", virDomai nName(dom);
vi r Domai nFree(donj ;

If the domain creation attempt succeeded, then thereturned vi r Donmai nPt r will be ahandleto the guest
domain. This must be released later when no longer needed by using the vi r Domai nFr ee method.
Although the domain was booted successfully, this does not guarantee that the domain istill running. Itis
entirely possiblefor the guest domain to crash, inwhich case attemptsto usethereturned vi r Domai nPt r
object will generate an error, since transient guests cease to exist when they shutdown (whether a planned
shutdown, or a crash). To cope with this scenario requires use of a persistent guest.

Defining and booting a persistent guest domain

Before a persistent domain can be booted, it must have its configuration defined. This again requires a
connection to libvirt and a string containing the XML document describing the required guest configu-
ration. The vi r Domai nPt r object obtained from defining the guest, can then be used to boot it. The
following example assumes that conn isan instance of thevi r Connect Pt r object.

vi r Domai nPtr dom
const char *xm config = "<domain>........ </ domai n>";

dom = vi r Connect Defi neXM_(conn, xm config, 0);

if ('dom ({
fprintf(stderr, "Domain definition failed");
return;

}

i f (virDomai nCreate(dom < 0) {
vi r Domai nFree(donj ;
fprintf(stderr, "Cannot boot guest");

55

Guest Domains

return;

}

fprintf(stderr, "Guest % has booted”, virDomai nName(dom);
vi r Domai nFree(donj ;

New guest provisioning techniques

Thissectionwill firstillustrate two configurationsthat allow for aprovisioning approach that iscomparable
to those used for physical machines. It then outlines athird option which is specific to virtualized hardware,
but has someinteresting benefits. For the purposes of illustration, the examplesthat follow will usea XML
configuration that sets up a KVM fully virtualized guest, with a single disk and network interface and a
video card using VNC for display.

<domai n type='"kvmi >
<nane>deno</ nane>
<uui d>c7a5f dbd- cdaf - 9455- 926a- d65¢c16db1809</ uui d>
<nmenor y>500000</ menor y>
<vcpu>1</vcpu>
the <os> block will vary per approach ..
<clock offset="utc'/>
<on_power of f >dest r oy</ on_power of f >
<on_r eboot >rest art </ on_r eboot >
<on_cr ash>destroy</on_crash>
<devi ces>
<enul at or >/ usr/ bi n/ gemu- kvnx/ emul at or >
<di sk type='file' device="disk' >
<source file="/var/lib/libvirt/imges/deno.ing' />
<driver name='qgemu' type='raw />
<target dev='hda'/>
</ di sk>
<interface type='bridge' >
<mac address='52:54:00: d8: 65:¢c9' />
<source bridge="br0'/>
</interface>
<i nput type='nmouse' bus='ps2'/>
<graphi cs type='vnc' port="-1'" listen='127.0.0.1'/>
</ devi ces>
</ domai n>

I mportant

Be careful in the choice of initial memory allocation, since too low avalue may cause mysterious
crashes and installation failures. Some operating systems need as much as 600 MB of memory
for initial installation, though this can often be reduced post-install.

CDROM/ISO image provisioning

All full virtualization technol ogies have support for emulatinga CDROM devicein aguest domain, making
this an obvious choice for provisioning new guest domains. It is, however, fairly rare to find a hypervisor
which provides CDROM devices for paravirtualized guests.

56

Guest Domains

The first obvious change required to the XML configuration to support CDROM installation, isto add a
CDROM device. A guest domains CDROM device can be pointed to either a host CDROM device, or to
alSO image file. The next change is to determine what the BIOS boot order should be, with there being
two possible options. If the hard disk islisted ahead of the CDROM device, then the CDROM mediawon't
be booted unless the first boot sector on the hard disk is blank. If the CDROM device is listed ahead of
the hard disk, then it will be necessary to alter the guest config after install to makeit boot off theinstalled
disk. While both can be made to work, the first option is easiest to implement.

The guest configuration shown earlier would have the following XML chunk inserted:

<0s>
<type arch='x86_64" nmachi ne=' pc' >hvnx/type>
<boot dev='hd'/>
<boot dev='cdrom />

</ 0s>

NB, this assumes the hard disk boot sector is blank initially, so that the first boot attempt falls through to
the CD-ROM drive. It will aso need a CD-ROM drive device added

<di sk type="file'" device= cdrom >
<source file="/var/lib/libvirt/imges/rhel 5-x86_64-dvd.iso' />
<target dev='hdc' bus='ide' />

</ di sk>

With the configuration determined, it isnow possibleto provision the guest. Thisisan easy process, ssimply
requiring a persistent guest to be defined, and then booted.

const char *xm = "<domai n>....</domai n>";
vi rDomai nPtr dom

dom = vi r Dormai nDef i neXM_(conn, xm);

if ('dom ({
fprintf(stderr, "Unable to define persistent guest configuration");
return;

}

i f (virDomai nCreate(dom < 0) {
fprintf(stderr, "Unable to boot guest configuration");

}

If it was not possible to guarantee that the boot sector of the hard disk is blank, then provisioning would
have been atwo step process. First atransient guest would have been booted using CD-ROM drive asthe
primary boot device. Once that completed, then a persistent configuration for the guest would be defined
to boot off the hard disk.

57

Guest Domains

PXE boot provisioning

Some newer full virtualization technologies provide a BIOS that is able to use the PXE boot protocol to
boot of the network. If an environment aready has a PXE boot provisioning server deployed, thisis a
desirable method to use for guest domains.

PXE booting aguest obviously requiresthat the guest has anetwork device configured. The LAN that this
network card is attached to, also needs a PXE / TFTP server available. The next change is to determine
what the BIOS boot order should be, with there being two possible options. If the hard disk islisted ahead
of the network device, then the network card won't PXE boot unless the first boot sector on the hard disk
is blank. If the network device islisted ahead of the hard disk, then it will be necessary to alter the guest
config after install to make it boot off the installed disk. While both can be made to work, the first option
is easiest to implement.

The guest configuration shown earlier would have the following XML chunk inserted:

<0S>
<type arch='x86_64" nachi ne=' pc' >hvnx/type>
<boot dev='hd' />
<boot dev='network'/>

</ 0s>

NB, this assumes the hard disk boot sector is blank initially, so that the first boot attempt falls through
to the NIC. With the configuration determined, it is now possible to provision the guest. Thisis an easy
process, simply requiring a persistent guest to be defined, and then booted.

const char *xm = "<dommi n>....</domai n>";
vi r Domai nPtr dom

dom = vi r Dormai nDef i neXM_(conn, xm);

if (!dom {
fprintf(stderr, "Unable to define persistent guest configuration");
return;

}

i f (virDomai nCreate(dom) < 0) {
fprintf(stderr, "Unable to boot guest configuration");

}

If it was not possible to guarantee that the boot sector of the hard disk is blank, then provisioning would
have been atwo step process. First atransient guest would have been booted using network asthe primary
boot device. Once that completed, then a persistent configuration for the guest would be defined to boot
off the hard disk.

Direct kernel boot provisioning

Paravirtualization technologies emulate a fairly restrictive set of hardware, often making it impossible
to use the provisioning options just outlined. For such scenarios it is often possible to boot a new guest
domain directly from an kernel and initrd image stored on the host file system. This has one interesting

58

Guest Domains

advantage, which isthat it is possible to directly set kernel command line boot arguments, making it very
easy to do fully automated installation. This advantage can be compelling enough that this technique is
used even for fully virtualized guest domains with CD-ROM drive/PXE support.

The one complication with direct kernel booting is that provisioning becomes a two step process. For the
first step, it is necessary to configure the guest XML configuration to point to a kernel/initrd.

<0s>
<type arch='x86_64" nachi ne=' pc' >hvnx/type>
<kernel >/var/lib/libvirt/boot/f11l-x86 64-vminuz</kernel >
<initrd>/var/lib/libvirt/boot/f11l-x86_64-initrd.inmg</initrd>
<cndl i ne>net hod=htt p://downl oad. f edor apr oj ect. or g/ pub/ fedora/l i nux/rel eases/ 11/ x
</ 0s>

Notice how the kernel command line provides the URL of download site containing the distro install tree
matching the kernel/initrd. This allows the installer to automatically download all its resources without
prompting the user for install URL. It could also be used to provide a kickstart file for completely unat-
tended installation. Finally, this command line also tells the kernel to activate both the first serial port and
the VGA card as consoles, with the latter being the default. Having kernel messages duplicated on the
seria port in this manner can be auseful debugging avenue. Of course valid command line argumentsvary
according to the particular kernel being booted. Consult the kernel vendor/distributor's documentation for
valid options.

Thelast XML configuration detail before starting the guest, isto change the 'on_reboot' element action to
be 'destroy’. This ensures that when the guest installer finishes and requests a reboot, the guest is instead
powered off. This allows the management application to change the configuration to make it boot off, just
installed, the hard disk again. The provisioning process can be started now by creating a transient guest
with the first XML configuration

const char *xm = "<dommi n>....</domai n>";
vi r Domai nPtr dom

dom = vi r Domai nCr eat eXM_(conn, xm);

if (!'dom {
fprintf(stderr, "Unable to boot transient guest configuration");
return;

Once this guest shuts down, the second phase of the provisioning process can be started. For this phase,
the 'OS' element will have the kernel/initrd/cmdline elements removed, and replaced by either areference
to a host side bootloader, or a BIOS boot setup. The former is used for Xen paravirtualized guests, while
the latter is used for fully virtualized guests.

The phase 2 configuration for a Xen paravirtualized guest would thus look like:

<boot | oader >/ usr/ bi n/ pygr ub</ boot | oader >
<os>

59

Guest Domains

<type arch='x86_64" nmachi ne=' pc' >xen</type>
</ 0s>

while a fully-virtualized guest would use:

<boot | oader >/ usr/ bi n/ pygr ub</ boot | oader >

<0S>
<type arch='x86_64"' machi ne=' pc' >hvnk/type>
<boot dev='hd' />

</ 0s>

With the second phase configuration determined, the guest can be recreated, this time using a persistent
configuration

const char *xm = "<dommi n>....</domai n>";
vi r Domai nPtr dom

dom = vi r Domai nCr eat eXM_(conn, xm);

if ('dom {
fprintf(stderr, "Unable to define persistent guest configuration\n");
return;

}

if (virDomai nCreate(dom) < 0) {
fprintf(stderr, "Unable to boot persistent guest\n");
return;

}

fprintf(stderr, "Guest provisoning conplete, OGS is running\n");

Stopping

Stopping refersto the process of halting arunning guest. A guest can be stopped by two methods: shutdown
and destroy.

Shutdown is a clean stop process, which sends a signal to the guest domain operating system asking it to
shut down immediately. The guest will only be stopped once the operating system has successfuly shut
down. The shutdown process is analagous to running a shutdown command on a physical machine.

Destroy immediately terminates the guest domain. The destroy process is analogous to pulling the plug
on aphysical machine.

Suspend / Resume and Save / Restore

Suspend and resume refers to the process of taking a running guest and temporarily saving its memory
state. At alater time, it is possible to resume the guest to its original running state, contiuining execution
where it |eft off. Suspend does not save a persistent image of the guest's memory. For this, saveis used.

60

Guest Domains

Save and restore refers to the process of taking a running guest and saving its memory state to afile. At
sometime later, it is possible to restore the guest to its original running state, continuing execution where
it left off.

It isimportant to note that the save/restore APIs only save the memory state, no storage state is preserved.
Thus when the guest is restored, the underlying guest storage must be in exactly the same state as it was
when the guest wasinitially saved. For basic usage thisimpliesthat aguest can only be restored once from
any given saved stateimage. To allow a guest to be restored from the same saved state multiple times, the
application must also have taken a snapshot of the guest storage at time of saving, and explicitly revert
to this storage snapshot when restoring. A future APl enhancement in libvirt will allow for an automated
snapshot capability which saves memory and storage state in one operation.

The save operation requiresthe fully qualified path to afile in which the guest memory state will be saved.
This filename is in the hypervisor's file system, not the libvirt client application's. There's no difference
between the two if managing alocal hypervisor, but it is critically important if connecting remotely to a
hypervisor across the network. The example that follows demonstrates saving a guest called 'demo-guest’
to afile. It checks to verify that the guest is running before saving, though this is technically redundant
since the hypervisor driver will do such acheck itself.

vi r Domai nPtr dom
vi r Domai nl nfoPtr info;
const char *filename = "/var/lib/libvirt/save/ denp-guest.inmg";
dom = vi r Domai nLookupByNane(conn, "deno-guest");
if ('dom {
fprintf(stderr, "Cannot find guest to be saved");
return;

}

i f (virDomai nGetlnfo(dom &anp;info) < 0) {
fprintf(stderr, "Cannot check guest state");
return;

}

if (info.state == VI R_DOVAI N_SHUTOFF) {
fprintf(stderr, "Not saving guest that isn't running");
return;

}

if (virDomai nSave(dom filenane) < 0) {
fprintf(stderr, "Unable to save guest to %", filenane);

}

fprintf(stderr, "Guest state saved to %", fil enane);

Some period of time later, the saved state file can then be used to restart the guest where it left of, using
the virDomainRestore API. The hypervisor driver will return an error if the guest is already running,
however, it won't prevent attempts to restore from the same state file multiple times. As noted earlier, it
is the applications' responsibility to ensure the guest storage is in exactly the same state as it was when
the save image was created

61

Guest Domains

vi r Domai nPtr dom
int id;
const char *filename = "/var/lib/libvirt/save/ deno-guest.inmg";

if ((id = virDomai nRestore(conn, filenane)) < 0) {
fprintf(stderr, "Unable to restore guest from %", fil enane);

}

dom = vi r Domai nLookupByl D(conn, id);

if ('dom ({
fprintf(stderr, "Cannot find guest that was restored");
return;

}

fprintf(stderr, "Guest state restored from %", fil enamne);

Migration

Migration isthe process of taking the image of aguest domain and moving it somewhere, typically from a
hypervisor on one node to a hypervisor on another node. There are two APIsfor migration. Thevi r Do-
mai nM gr at e command takes an established hypervisor connection, and instructsthe domain to migrate
to this connection. Thevi r M gr at eToUri command takes a URI specifying a hypervisor connection,
opens the connection, then instructions the domain to migrate to this connection. Both these commands
can be passed a parameter to specify live migration. For migration to complete successfully, storage needs
to be shared between the source and target hypervisors.

TODO: Add 2 cold examples, 1 live example.

Autostart

A guest domain can be configured to autostart on a particular hypervisor, either by the hypervisor itself or
libvirt. In combination with managed save, thisallowsthe operating system on aguest domain to withstand
host reboots without ever considering itself to have rebooted. When libvirt restarts, the guest domain will
be automatically restored. Thisis handled by an API separate to regular save and restore, because paths
must be known to libvirt without user input.

TODO: code example.

Domain configuration

Domains are defined in libvirt using XML. Everything related only to the domain, such as memory and
CPU, isdefined in the domain XML. The domain XML format is specified at http://libvirt.org/formatdo-
main.html. Thiscan be accessed locally in/ usr / shar e/ doc/ 1 i bvi rt-devel - versi on/ if your
system has the libvirt-devel package installed.

Boot modes

TBD

Memory / CPU resources

TBD. Maps to the basic resources section.

62

http://libvirt.org/formatdomain.html
http://libvirt.org/formatdomain.html

Guest Domains

Lifecycle controls

TBD

Clock sync

TBD

Features

TBD

Monitoring performance

Statistical metrics are available for monitoring the utilization rates of domains, vCPUs, memory, block
devices, and network interfaces.

Domain performance

TBD

vCPU performance

TBD

I/O statistics

TBD

Device configuration
TBD

Emulator

TBD

Disks

TBD

Networking

TBD

Filesystems

TBD

63

Guest Domains

Mice & tablets

TBD

USB device passthrough

TBD

PCIl device passthrough

The PCI device passthrough capability allows aphysical PCI device from the host machine to be assigned
directly to a guest machine.The guest OS drivers can use the device hardware directly without relying on
any driver capabilities from the host OS.

Some caveats apply when using PCI device passthrough. When a PCI device is directly assigned to a
guest, migration will not be possible, without first hot-unplugging the device from the guest. In addition
libvirt does not guarantee that direct device assignment is secure, leaving security policy decisionsto the
underlying virtualization technology. Secure PCI device passthrough typically requires specia hardware
capabilities, such the VT-d feature for Intel chipset, or IOMMU for AMD chipsets.

Therearetwo modesinwhich aPCl device can be attached, "managed"” or "unmanaged" mode, although at
time of writing only KVM supports"managed” mode attachment. In managed mode, the configured device
will be automatically detached from the host OS drivers when the guest is started, and then re-attached
when the guest shuts down. In unmanaged mode, the device must be explicit detached ahead of booting the
guest. The guest will refuse to start if the device is still attached to the host OS. The libvirt 'Node Device
APIs provide ameans to detach/reattach PCI devices from/to host drivers. Alternatively the host OS may
be configured to blacklist the PCI devices used for guest, so that they never get attached to host OS drivers.

In both modes, the virtualization technology will aways perform a reset on the device before starting a
guest, and after the guest shuts down. Thisiscritical to ensure isolation between host and guest OS. There
are avariety of ways in which a PCI device can be reset. Some reset techniques are limited in scope to
a single device/function, while others may affect multiple devices at once. In the latter case, it will be
necessary to co-assign al affect devicesto the same guest, otherwise areset will beimpossibleto do safely.
The node device APIs can be used to determine whether a device needs to be co-assigned, by manually
detaching the device and then attempting to perform the reset operation. If this succeeds, then it will be
possible to assign the device to a guest on its own. If it fails, then it will be necessary to co-assign the
device will others on the same PCI bus. The section documenting node device APIs covers this topic in
detail, but as a quick demonstration the following code checks whether a PCI device (represented by a
virNodeDevicePtr object instance) can be reset and is thus assignable to a guest

vi r NodeDevi cePtr dev =get virNodeDevicePtr for the PCl device...

i f (virNodeDeviceDettach(dev) < 0) {
fprintf(stderr, "Device cannot be dettached fromthe host OS drivers\n");
return;

}

i f (virNodeDeviceReset(dev) < 0) {
fprintf(stderr, "Device cannot be safely reset w thout affecting other devices
return;

Guest Domains

fprintf(stderr, "Device is suitable for passthrough to a guest\n");

A PCI device is attached to a guest using the 'hostdevice' element. The 'mode’ attribute should always
be set to 'subsystem’, and the 'type' attribute to 'pci'. The 'managed' attribute can be either 'yes or 'no' as
required by the application. Within the 'hostdevice' element there is a 'source’ element and within that a
further ‘address element is used to specify the PCI device to be attached. The address element expects
attributes for 'domain’, 'bus, 'slot' and ‘function’. Thisis easiest to see with a short example

<host dev npde=' subsysten type='pci' managed='yes'>

<source>
<addr ess donmi n=' 0x0000
bus=' 0x06'
sl ot = 0x12'
function="0x5"'/>
</ sour ce>

</ host dev>

Live configuration change
TBD

Memory ballooning

TBD

CPU hotplug

TBD

Device hotplug / unplug

TBD

Device media change

TBD

Block Device Jobs

Libvirt provides a generic Block Job API that can be used to initiate and manage operations on disks that
belong to a domain. Jobs are started by calling the function associated with the desired operation (eg.
vi r Domai nBl ockPul |). Once started, al block jobs are managed in the same manner. They can be
aborted, throttled, and queried. Upon completion, an asynchronous event is issued to indicate the final
status.

The following block jobs can be started:

65

Guest Domains

1. vi r Domai nBl ockPul | () startsablock pull operation for the specified disk. Thisoperationisvalid
only for specially configured disks. BlockPull will populate a disk image with data from its backing
image. Once all data from its backing image has been pulled, the disk no longer depends on a backing
image.

A disk can be queried for active block jobs by using vi r Domai nGet Bl ockJobl nf o() . If found, job
information isreported in a structure that contains; the job type, bandwidth throttling setting, and progress
information.

vi r Domai nBl ockJobAbort () can be used to cancel the active block job on the specified disk.

Usevi r Domai nBl ockJobSet Speed() to limit the amount of bandwidth that a block job may con-
sume. Bandwidth is specified in units of MB/sec.

When ablock job operation completes, thefinal statusisreported using an asynchronous event. To receive
this event, register avi r Connect Donai nEvent Bl ockJobCal | back function which will receive
the disk, event type, and status as parameters.

/* exanpl e bl ockpul | -exanple.c */

/* conpile with: gcc -g -VWall bl ockpul | -exanmple.c -o bl ockpul | -exanple -lvirt */
#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

#include <libvirt/libvirt. h>

int do_cnd(const char *cndl i ne)

{
int status = systen{cndline);
if (status < 0)
return -1,
el se
return WEXI TSTATUS(st at us) ;
}
vi r Domai nPtr nmake_domai n(vi r Connect Ptr conn)
{

vi r Domai nPtr dom
char donxm [] =\
"<domai n type='kvm > \
<nane>exanpl e</ nane> \
<menor y>131072</ menory> \
<vcpu>1</vcpu> \
<os> \
<type arch='x86_64" nachi ne=' pc-0. 13" >hvnx/type> \
</ os> \
<devi ces> \
<di sk type='"file' device="disk' >\
<driver name='qgenmu' type='ged /> \
<source file="/var/lib/libvirt/imges/exanple.qed /> \
<target dev='vda' bus='virtio /> \
</ di sk> \
</ devi ces> \
</ domai n>";

66

Guest Domains

do_cnd("gemu-ing create -f raw /var/lib/libvirt/imges/backing.ged 100M);
do_cnd("gemu-ing create -f ged -b /var/lib/libvirt/imges/backing.qged \
[var/lib/libvirt/imges/exanple.qged");

dom = vi r Domai nCr eat eXM_(conn, donxm , 0);
return dom

}
int main(int argc, char *argv[])
{
vi rConnect Ptr conn;
vi r Domai nPtr dom = NULL
char disk[] = "/var/lib/libvirt/inages/exanple.ged"
conn = virConnect Open("qgenu:///systent);
if (conn == NULL) {
fprintf(stderr, "Failed to open connection to genu:///systemn");
goto error;
}
dom = make_domai n(conn);
if (dom == NULL) {
fprintf(stderr, "Failed to create domain\n");
goto error;
}
if ((virDomai nBl ockPull (dom disk, 0, 0)) < 0) {
fprintf(stderr, "Failed to start block pull™);
goto error;
}
while (1) {
vi r Domai nBl ockJobl nfo i nfo;
int ret = virDomai nGet Bl ockJobl nfo(dom di sk, & nfo, 0);
if (ret ==1) {
printf ("Bl ockPull progress: %9.0f %Aan",
(float) (100 * info.cur / info.end));
} elseif (ret == 0) {
printf ("Bl ockPull conplete\n");
br eak;
} else {
fprintf(stderr, "Failed to query bl ock jobs\n");
br eak;
}
usl eep(100000);
}
error:

unlink("/var/lib/libvirt/inmges/backing.ged");
unlink("/var/lib/libvirt/inmges/exanple.qged");
if (dom!= NULL) {

vi r Domai nDest roy(donj ;

vi r Domai nFree(donj ;

67

Guest Domains

}
if (conn !'= NULL)

vi r Connect Cl ose(conn);
return O;

}
Security model

TBD

Event notifications

TBD

Tuning
TBD

Scheduler parameters

TBD

NUMA placement

TBD

68

Chapter 5. Storage Pools

Thisisatest paragraph

Overview

TBD

Listing pools

TBD

Pool usage

TBD

Lifecycle control

TBD

Discovering pool sources

TBD

Pool configuration

TBD

Volume overview

TBD

Listing volumes

TBD

Volume information

TBD

Creating and deleting volumes

TBD

Cloning volumes

TBD

69

Storage Pools

Configuring volumes

TBD

70

Chapter 6. Virtual Networks

TBD

Overview

TBD

Listing networks

TBD

Lifecycle control

TBD

Network configuration

TBD

71

Chapter 7. Network Interfaces

This section covers the management of physical network interfaces using the libvirt API.

Overview

The configuration of network interfaces on physical hosts can be examined and modified with functions
inthevi r | nt er f ace API. Thisisuseful for setting up the host to share one physical interface bewteen
multiple guest domainsyou want connected directly to the network (briefly - enslave aphysical interfaceto
the bridge, then create atap devicefor each VM you want to share theinterface), aswell asfor general host
network interface management. In addition to physical hardware, this API can also be used to configure
bridges, bonded interfaces, and vlan interfaces.

Thevi rl nterface APl isnot used to configure virtual networks (used to conceal the guest domain's
interface behind aNAT); virtua networks are instead configured using the vi r Net wor k API described
in Chapter 6, Virtual Networks.

Each host interfaceisrepresentedinthe APl by avi r | nt er f acePt r - apointer to an "interface object"
- and each of these has a single unique identifier:

nane: astring unique among all interfaces (active or inactive) on a host. This is the same string used by
the operating system to identify the interface (eg: "eth0" or "brl").

Each interface object also has a second, non-unique index that can be duplicated in other interfaces on
the same host:

mac: an ASCII string representation of the MAC address of this interface. Since multiple interfaces can
sharethe same MAC address (for example, in the case of VLANS), thisisnot auniqueidentifier. However,
it can still be used to search for an interface.

All interfaces configured with libvirt should be considered as persistent, since libvirt is actually changing
the host's own persistent configuration data (usually contained in files somewhere under / et c), and not
the interface itself. However, there are API functions to start and stop interfaces, and those actions cause
the new configuration to be applied to the interface immediately.

When anew interfaceisdefined (withvi r I nt er f aceDef i neXM.), or the configuration of an existing
interfaceis changed (again, withvi r | nt er f aceDef i neXM.), this configuration will be stored on the
host. The live configuration of the interface itself will not be changed until either the interface is started
(withvi r 1 nt er f aceCr eat e), or the host is rebooted.

XML Interface Description Format

The current Relax NG definition of the XML that is produced and accepted by vi r | nt er f aceDe-
fineXMLandvirl nt erfaceGet XM_Desc canbefoundinthefiledat a/ xm /i nterface. rng
of the netcf package, available at http://git.fedorahosted.org/git/netcf.git?p=netcf.git;a=tree. Below are
some examples of common interface configurations.

Example 7.1. XML definition of an ethernet interface using DHCP

<interface type='ethernet' name='ethQ' >
<start node=' onboot'/>
<mac address='aa: bb:cc:dd:ee:ff'/>

72

http://git.fedorahosted.org/git/netcf.git?p=netcf.git;a=tree

Network Interfaces

<protocol famly="ipv4 >
<dhcp/ >
</ pr ot ocol >
</interface>

Example 7.2. XML definition of an ethernet interface with static IP

<interface type='ethernet' nanme='eth0' >
<start node=' onboot'/>
<mac address='aa: bb:cc:dd:ee:ff'/>
<protocol famly="ipv4 >
<i p address="192.168.0.5" prefix="24"/>
<rout e gateway="192.168.0.1"/>
</ pr ot ocol >
</interface>

Example 7.3. XML definition of a bridge device with ethO and eth1 attached

<interface type="bridge" nane="br0">
<start node="onboot"/>
<mu size="1500"/>
<protocol famly="ipv4">
<dhcp/ >
</ pr ot ocol >
<bridge stp="of f" del ay="0.01">
<interface type="ethernet" nanme="eth0">
<mac address="ab: bb:cc:dd:ee:ff"/>
</interface>
<interface type="ethernet" name="ethl"/>
</ bridge>
</interface>

Example 7.4. XML definition of a vlan interface associated with ethO

<interface type="vlan" nane="eth0. 42" >
<start node="onboot"/>
<protocol famly="ipv4">
<dhcp peerdns="no"/>
</ pr ot ocol >
<vl an tag="42">
<interface nanme="et h0"/>
</ vl an>
</interface>

Retrieving Information About Interfaces

Enumerating Interfaces

Once you have a connection to a host, represented by avi r Connect Pt r , you can determine the num-
ber of interfaces on the host with vi r Connect NuntOf | nt er f aces and vi r Connect NunOr De-

73

Network Interfaces

finedl nterfaces. A list of those interfaces names can be obtained with vi r Connect Li st | n-

terfaces andvir Connect Li st Def i nedl nt er f aces ("defined" interfaces are those that have
been defined, but are currently inactive). Each of these functions takes a connection object asits first ar-
gument; thelist functions al so take an argument pointing to achar* array for the result, and another giving
the maximum number of entries to put in that array. All four functions return the number of interfaces
found, or -1 if an error is encountered.

Example 7.5. Getting a list of active (" up") interfaces on a host

Note: error handling omitted for clarity

int num faces, i;
char *ifaceNanes;

num faces = virConnect Nunt¥ | nt erfaces(conn);
i faceNanes = mal |l oc(num faces * sizeof(char*));
num faces = virConnectListlnterfaces(conn, names, ct);

printf("Active host interfaces:\n");

for (i = 0; i < numfaces; i++) {
printf(" %\n", ifaceNanes[i]);
free(ifaceNanmes[i]);

}

free(ifaceNames);

Example 7.6. Getting a list of inactive (" down") interfaces on a host

int num faces, i;
char *ifaceNanes;

num faces = virConnect Nunf Def i nedl nt erfaces(conn);
i faceNanes = mal |l oc(num faces * sizeof(char*));
num faces = virConnect Li st Defi nedl nterfaces(conn, nanes, ct);

printf("lnactive host interfaces:\n");

for (i = 0; i < numfaces; i++) {
printf(" %\n", ifaceNanes[i]);
free(ifaceNanmes[i]);

}

free(ifaceNames);

Alternative method of enumerating interfaces

Itisalso possibleto get alist of interfacesfromthevi r NodeDevi ce function. Callingvi r NodeLi st -
Devi ces with the cap argument (capabilities) set to net . Thiswill return alist of device names (each
starting with "net_"), and those device names can, in turn, be sent through vi r NodeDevi ceLookup-
ByNane, thenvi r NodeDevi ceCGet XM_Desc to get an XML string containing the interfaces names,
MAC addresses, and 802.11 vs. 802.03 status (wired vs wireless). See the section called “ Device config-
uration” for more information and examples of using vi r NodeDevi ce functions for this purpose.

74

Network Interfaces

Obtaining a virlnterfacePtr for an Interface

Many operationsrequirethat you haveavi r | nt er f acePt r , but you may only have the name or MAC
addressof theinterface. Youcanusevi r | nt er f aceLookupByNane andvi r | nt er f aceLookup-
ByMACSt ri ng to get thevi r | nt er f acePt r in these cases.

Example 7.7. Fetching the virInterfacePtr for a given interface name

virlnterfacePtr iface;
const char *nanme = "eth0";

i face = virlnterfaceLookupByNanme(nane);
if (iface) {
/* use the virlnterfacePtr ... */
virlnterfaceFree(iface);

} else {
printf("Interface '%' not found.\n", nane);
}

Example 7.8. Fetching the virInterfacePtr for a given interface MAC Address

virlnterfacePtr iface;
const char *mac = "00:01: 02: 03: 04: 05";

iface = virlnterfaceLookupByMACStri ng(mac);
if (iface) {
/* use the virlnterfacePtr ... */

virlnterfaceFree(iface);
} else {

printf("No interface found with MAC address '%'.\n", nmac);
}

Notethat, as shown in the examples, after you arefinished usingthevi r I nt er f acePt r , you must call
vi rl nt er f aceFr ee to free up its resources, even if you undefined or destroyed the interface in the
meantime. Also note that performing alookup for aMAC address that has multiple matches will result in
aNULL return and aVIR_ERR_MULTIPLE_INTERFACES error being raised. This limitation will be
addressed in the near future with anew API function.

Retrieving Detailed Interface Information

You may also find yourself with avi rl nterfacePtr, and need the name or MAC address of the
interface, or want to examine the full interface configuration. Thevi r I nt er f aceGet Nane, vi r | n-
terfaceGet MACSt ri ng,andvi rl nt erf aceGet XM.Desc functions provide this capability.

75

Network Interfaces

Example 7.9. Fetching the name and mac address from an inter face obj ect

const char *nane;
const char *mac;

nanme = virlnterfaceGet Nane(iface);
mac = virlnterfaceGet MACStri ng(iface);

printf("Interface % has MAC address %", nane, mac);

Notethat the stringsreturned by vi r I nt er f aceGet Nane andvi r | nt er f aceGet MACSt ri ng do
not need to be freed by the application; their lifetime will be the same as the interface object.

The string returned by vi r I nt er f aceGet XM_Desc, on the other hand, is created especially for the
caler, andthecaller must freeit whenfinished. vi r | nt er f aceget XM_Desc also hasaflagsargument,
intended for future expansion. For forward compatibility, you should aways set it to 0. The returned string
is UTF-8 encoded. The same string may later be giventovi r | nt er f aceDef i ne XML to recreate the
interface configuration.

Example 7.10. Fetching the XML configuration string from an inter face object

const char *xnl;

nanme = virlnterfaceGet XM_Desc(iface, 0);
printf("Interface configuration:\n%\n", xm);
free(xm);

Managing interface configuration files

Inlibvirt, "defining" an interface means creating or changing the configuration, and "undefining" means
deleting that configuration from the system. Newcomers may sometimes confuse these two operations
with Create/Delete (which actually are used to activate and deactivate an existing interface - seethe section
called “Interface lifecycle management”).

Defining an interface configuration

Thevi rl nterfaceDefi neXM function is used for both adding new interface configurations and
modifying existing configurations. It either adds a new interface (with al information, including the in-
terface name, given in the XML data) or modifies the configuration of an existing interface. The newly
defined interface will be inactive until separate action is taken to make the new configuration take effect
(for example, rebooting the host, or calling vi r | nt er f aceCr eat e, described in the section called
“Interface lifecycle management”)

If the interface is successfully added/modified in the host's configuration, vi r | nt er f aceDef i neXM
returnsavi r | nt er f acePt r . This can be used as a handle to perform further actions on the new inter-
face, for example making it activewithvi r I nt er f aceCr eat e.

When you arefinished using thereturned vi r I nt er f acePt r , youmust freeitwithvi r I nt er f ace-
Fr ee. This does not remove the interface itself, just the internal object used by libvirt.

Example 7.11. Defining a new interface

76

Network Interfaces

/* xm is a char* containing the description, per section 7.2 */
virlnterfacePtr iface;

iface = virlnterfaceDefineXM_(xm, 0);

if (liface) {
fprintf(stderr, "Failed to define interface.\n");
/* other error handling */
got o cl eanup;

}
if (virlnterfaceCreate(iface) !'= 0) {
fprintf(stderr, "Failed to create (activate) interface\n");
[* other error handling */
goto cl eanup;
}
virlnterfaceFree(iface);
cl eanup:
[* .00

Undefining an interface configuration

Thevi rlnterfaceUndefi ne function completely and permanently removes the configuration for
the given interface from the host's configuration files. If you want to recreate this configuration again in
the future, you should call vi r | nt er f aceget XM_Desc and save the string prior to the undefine.

virlnterfaceUndefi ne doesnot freethevi r i nt erfacePtr itsef, it only removes the config-
uration from the host. Y ou must still freethevi r I nt er f acePt r withvi rl nt er f aceFr ee.

Example 7.12. Undefining brO interface after saving its XML data

virlnterfacePtr iface;
char *xm = NULL;;

iface = virlnterfaceLookupByName("br0");
if (liface) {
printf ("Interface brO not found.\n");
} else {
xm = virlnterfaceGet XM_Desc(iface, 0);
virlnterfaceUndefine(iface);
virlnterfaceFree(iface);
}

/* you rmust also free the buffer at xml when you're finished with it */

Interface lifecycle management

In libvirt parlance, "creating" an interface means making it active, or "bringing it up", and "deleting" an
interface means making it inactive, or "bringing it down". On hosts using the netcf backend for interface
configuration, such as Fedora and Red Hat Enterprise Linux, this is the same as calling the system shell
scriptsifup and ifdown for the interface.

77

Network Interfaces

Activating an interface

vi rlnterfaceCreat e makes the given inactive interface active ("up"). On success, it returns 0. If
thereisany problem making theinterface active, -1 isreturned. Example 7.11, “ Defining anew interface”
shows typical usage of this function.

Deactivating an interface

vi rl nt er f aceDest r oy makesthe giveninterfaceinactive ("down"). On success, it returns 0. If there
isany problem making the interface active, -1 is returned.

Example 7.13. Temporarily bring down eth2, then bring it back up

virlnterfacePtr iface;

iface = virlnterfaceLookupByName("eth2");
if (liface) {
printf("Interface eth2 not found.\n");
} else {
if (virlnterfaceDestroy(iface) != 0) {
fprintf(stderr, "failed to destroy (deactivate) interface eth2.\n");

} else
/* do whatever you wanted to do with interface down */
if (virlnterfaceCreate(iface) !'= 0) {
fprintf(stderr, "failed to create (activate) interface eth2.\n");
}
}

free(iface);

}

Interface object memory management

Any time an application calls a function that returnsavi r | nt er f acePt r, it isimplied that a refer-
ence counter has been incremented for that particular interface object. To decrement the reference counter
(eventually resulting in the interface object's resources being freed), call vi r I nt er f aceFr ee. This
reference counting assures that the interface object will not be freed while an application is still using it.

For cases where an application makes acopy of avi r | nt er f acePt r and stores it away somewhere
which may requirealifetimelonger thanthat of theorigina vi r I nt er f acePtr,vi rl nt er f aceRef

should be called to manually increment the reference count. vi r | nt er f aceFr ee should then becalled
an extratime, when that copy of thevi r I nt er f acePt r isno longer being used.

Example 7.14. Refer ence counting an inter face object

virlnterfacePtr iface;
iface = virlnterfaceLookupByNanme("eth0");

mydata.iface = iface;
virlnterfaceRef(mydata.iface);

78

Network Interfaces

/* now we're done with iface */
virlnterfaceFree(iface);

/* now we're done with nydata.iface */
virlnterfaceFree(nydata.iface);

79

Chapter 8. Host Devices

Currently lacks docs

80

Chapter 9. Alternative Language
Bindings

Python

TBD

Perl

TBD

Java

TBD

81

Appendix A. Revision History

Revision History

Revision 1-4 Mon Aug 23 2010

Updated content for the connections chapter

Revision 1-3 Mon Aug 16 2010

Several new chapters of content, extensive editing
Revision 1-2 Tue Jan 19 2010

First draft published to libvirt.org

Revision 1-1 Tue Nov 17 2009

Initial draft of document

DavidJorm<dj or m@ ed-
hat . conp

DavidJorm<dj or m@ ed-
hat . conp

DavidJorm<dj or m@ ed-
hat . conp

DanielBer-
range<ber r ange@ ed-
hat . con

82

	Application Development Guide
	Table of Contents
	Preface
	Document Conventions
	Typographic Conventions
	Pull-quote Conventions
	Notes and Warnings

	We Need Feedback!

	Chapter 1. Introduction
	Overview
	Glossary of terms

	Chapter 2. Architecture
	Object model
	Hypervisor connections
	Guest domains
	Virtual networks
	Storage pools
	Storage volumes
	Host devices

	Driver model
	Remote management
	Basic usage
	Data Transports
	Authentication schemes

	Generating TLS certificates
	Public Key Infrastructure setup

	Chapter 3. Connections
	Overview
	virConnectOpen
	virConnectOpenReadOnly
	virConnectOpenAuth
	virConnectClose

	URI formats
	Local URIs
	Remote URIs

	Capability information
	Host information
	virConnectGetHostname
	virConnectGetMaxVcpus
	virNodeGetFreeMemory
	virNodeGetInfo
	virNodeGetCellsFreeMemory
	virConnectGetType
	virConnectGetVersion
	virConnectGetLibVersion
	virConnectGetURI
	virConnectIsEncrypted
	virConnectIsSecure

	Event loop integration
	Security model
	Error handling
	virSetErrorFunc
	virConnSetErrorFunc
	virCopyLastError
	virGetLastError
	virSaveLastError
	virResetError
	virFreeError
	virConnResetError
	virConnCopyLastError
	virConnGetLastError

	Debugging / logging
	Environment Variables

	Integrated example

	Chapter 4. Guest Domains
	Domain overview
	Listing domains
	Lifecycle control
	Provisioning and starting
	APIs for provisioning
	Booting a transient guest domain
	Defining and booting a persistent guest domain

	New guest provisioning techniques
	CDROM/ISO image provisioning
	PXE boot provisioning
	Direct kernel boot provisioning

	Stopping
	Suspend / Resume and Save / Restore
	Migration
	Autostart

	Domain configuration
	Boot modes
	Memory / CPU resources
	Lifecycle controls
	Clock sync
	Features

	Monitoring performance
	Domain performance
	vCPU performance
	I/O statistics

	Device configuration
	Emulator
	Disks
	Networking
	Filesystems
	Mice & tablets
	USB device passthrough
	PCI device passthrough

	Live configuration change
	Memory ballooning
	CPU hotplug
	Device hotplug / unplug
	Device media change
	Block Device Jobs

	Security model
	Event notifications
	Tuning
	Scheduler parameters
	NUMA placement

	Chapter 5. Storage Pools
	Overview
	Listing pools
	Pool usage
	Lifecycle control
	Discovering pool sources
	Pool configuration
	Volume overview
	Listing volumes
	Volume information
	Creating and deleting volumes
	Cloning volumes
	Configuring volumes

	Chapter 6. Virtual Networks
	Overview
	Listing networks
	Lifecycle control
	Network configuration

	Chapter 7. Network Interfaces
	Overview
	XML Interface Description Format
	Retrieving Information About Interfaces
	Enumerating Interfaces
	Alternative method of enumerating interfaces
	Obtaining a virInterfacePtr for an Interface
	Retrieving Detailed Interface Information

	Managing interface configuration files
	Defining an interface configuration
	Undefining an interface configuration

	Interface lifecycle management
	Activating an interface
	Deactivating an interface

	Interface object memory management

	Chapter 8. Host Devices
	Chapter 9. Alternative Language Bindings
	Python
	Perl
	Java

	Appendix A. Revision History

